

Appendix 1

Roswell Daily Record
July 9, 1947

today I
apartm
bed she
throat
in the
A ma
told po
known
Luggage
K. T."m
ment.

Police
known
other re
house a
other na

Homic
they fo
smoking
ment.

The m
she ente
a. m., s
room, fo
then disc
ed on th

The bo
twin bed
beaten a
tor who
she had

Deputy
lins, in
tectives,
disturbed
brownish
of the ot
from it a
in the st

Named t
Frank

been app
county s
vacancy l
E. A. Pac
wide exp
and as a
school bo

Harassed Rancher who Located 'Saucer' Sorry He Told About It

W. W. Brazel, 48, Lincoln county rancher living 30 miles south east of Corona, today told his story of finding what the army at first described as a flying disk, but the publicity which attended his find caused him to add that if he ever found anything else short of a bomb he sure wasn't going to say anything about it.

Brazel was brought here late yesterday by W. E. Whitmore, of radio station KGFL, had his picture taken and gave an interview to the Record and Jason Kellahin, sent here from the Albuquerque bureau of the Associated Press to cover the story. The picture he posed for was sent out over AP telephoto wire sending machine specially set up in the Record office by R. D. Adair, AP wire chief sent here from Albuquerque for the sole purpose of getting out his picture and that of sheriff George Wilcox, to whom Brazel originally gave the information of his find.

Brazel related that on June 14 he and an 8-year old son, Vernon, were about 7 or 8 miles from the ranch house of the J. B. Foster ranch, which he operates, when

they came upon a large area of bright wreckage made up on rubber strips, tinfoil, a rather tough paper and sticks.

At the time Brazel was in a hurry to get his round made and he did not pay much attention to it. But he did remark about what he had seen and on July 4 he, his wife, Vernon and a daughter Betty, age 14, went back to the spot and gathered up quite a bit of the debris.

The next day he first heard about the flying disks, and he wondered if what he had found might be the remnants of one of these.

Monday he came to town to sell some wool and while here he went to see sheriff George Wilcox and "whispered kind a confidential like" that he might have found a flying disk.

Wilcox got in touch with the Roswell Army Air Field and Maj. Jesse A. Marcel and a man in plain clothes accompanied him home, where they picked up the rest of the pieces of the "disk" and went to his home to try to reconstruct it.

According to Brazel they simply

could not reconstruct it at all. They tried to make a kite out of it, but could not do that and could not find any way to put it back together so that it would fit.

Then Major Marcel brought it to Roswell and that was the last he heard of it until the story broke that he had found a flying disk.

Brazel said that he did not see it fall from the sky and did not see it before it was torn up, so he did not know the size or shape it might have been, but he thought it might have been about as large as a table top. The balloon which held it up, if that was how it worked, must have been about 12 feet long, he felt, measuring the distance by the size of the room in which he sat. The rubber was smoky gray in color and scattered over an area about 200 yards in diameter.

When the debris was gathered up the tinfoil, paper, tape, and sticks made a bundle about three feet long and 7 or 8 inches thick, while the rubber made a bundle about 18 or 20 inches long and about 8 inches thick. In all, he estimated, the entire lot would

have weighed maybe five pounds.

There was no sign of any metal in the area which might have been used for an engine and no sign of any propellers of any kind, although at least one paper fin had been glued onto some of the tinfoil.

There were no words to be found anywhere on the instrument, although there were letters on some of the parts. Considerable scotch tape and some tape with flowers printed upon it had been used in the construction.

No strings or wire were to be found but there were some eyelets in the paper to indicate that some sort of attachment may have been used.

Brazel said that he had previously found two weather observation balloons on the ranch, but that what he found this time did not in any way resemble either of these.

"I am sure what I found was not any weather observation balloon," he said. "But if I find anything else, besides a bomb they are going to have a hard time getting me to say anything about it."

Appendix 2

Interview
Col Richard L. Weaver with
LtCol Sheridan Cavitt, USAF(ret)

TRANSCRIPT OF INTERVIEW OF SHERIDAN CAVITT

(Note: RW = Col Richard L. Weaver; SC = Sheridan Cavitt; MC = Mary Cavitt)

RW: Today is the 24th of May 1994. I am in [redacted] Washington. I am Colonel Richard L. Weaver and I am talking to Lt Col Sheridan Cavitt, US Air Force, Retired. Also present in the room is his wife, Mary. Colonel, you don't mind that I tape record this do you?

SC: Go right ahead.

RW: O.K. thank you. What I would like to ask you is to confirm you were with the Counter Intelligence Corps (CIC) (at that time of the US Army) in 1947?

SC: Yes...the Army Air Corps...right.

RW: When did you get transferred to Roswell, Sir?

SC: I went to Roswell after going to the CIC School in Baltimore, Maryland, at Camp Holabird...in 1946. I do not remember the month. My wife might. It was in the Fall was it not?

MC: June of 47.

SC: June?

RW: I think on your records you graduated in June of 47.

SC: From Holabird?

RW: Yeah, Holabird.

SC: O.K...I told you my dates are slipping my mind.

RW: That's O.K...I have the same problem.

SC: It's hard to remember July 47. I hadn't been there very long.

RW: Did you know a Major Jesse Marcel who was the Intelligence Officer during Roswell at that time?

SC: Oh yes. I knew Jesse, his wife, and his son. We were very close friends. We were in the same building in the CIC office, which was next to the intelligence office. We associated socially as well as business.

RW: Sir, you were the senior officer and the commander at the detachment there at Roswell?

SC: Yes, I guess you could say that. I was the only commissioned officer. I had two enlisted agents "working for me" quote end quote.

RW: Who were the enlisted agents that worked for you?

SC: The senior was a Master Sergeant by the name of Rickett and the young agent, Jack Williams. I later had some other people working for me after CIC deceased and OSI took over for the Air Force...the investigative agency.

RW: That actually came, I think, in September when the Air Force first stated. You were one of the charter members of OSI, as I understand?

SC: Yeah, over from CIC and OSI; and then I went to OSI school later.

RW: You reported through your chain of command? You didn't report to General Blanchard, the Base Commander? You reported like we did in OSI through the separate chain of command, as I understand it; is that right?

SC: Yeah, our parent organization was 700 CIC and I believe that there...they had sort of a branch up in Colorado at that time, but I think most of our work was sent directly back to Bolling at that time. I am a little fuzzy on that because I wasn't in the organization very long, you know.

RW: OK. General Blanchard was the Base Commander and everyone else in the 509th basically reported to him then?

SC: Oh yeah. Colonel Blanchard.

RW: Oh yeah. Excuse me, Colonel Blanchard.

SC: He was the Wing Commander of the 509th, right. I didn't report to anybody on the base.

RW: Just like in OSI?

SC: Yeah, I associated and coordinated stuff with Marcel and I had no responsibility to Blanchard or Marcel.

RW: Do you recall an incident that happened during the early part of July when you were asked to accompany Major Marcel to go recover some wreckage of anything?

SC: Well, there again I couldn't swear to the dates, but in that time, which must have been July, we heard that someone had found some debris out not too far from Roswell and it looked suspicious; it was unidentified. So, I went out and I do not recall whether Marcel went with Rickett and me; I had Rickett with me. We went out to this site. There were no, as I understand, check points or anything like that (going through guards and that sort of garbage) we went out there and we found it. It was a small amount of, as I recall, bamboo sticks, reflective sort of

material that would, well at first glance, you would probably think it was aluminum foil, something of that type. And we gathered up some of it. I don't know whether we even tried to get all of it. It wasn't scattered; well, what I call, you know, extensively. Like, it didn't go along the ground and splatter off some here and some there. We gathered up some of it and took it back to the base and I remember I had turned it over to Marcel. As I say, I do not remember whether Marcel was there or not on the site. He could have been. We took it back to the intelligence room...in the CIC office.

RW: What did you think it was when you recovered it?

SC: I thought a weather balloon.

RW: O.K. Were you familiar with weather balloons at the time?

SC: I had seen them. I had seen them. As I recall, I am really reaching back, I think they were equipped with a radio sonde or something like that, that transmitted data from, when it got up to altitude (what altitude I have no idea) and somebody on the ground received it and that way they got some information on what was happening up there.

RW: O.K.

SC: This is all over my head. When I saw it it was to flimsy to be anything to carry people or anything of that sort. It never crossed my mind that it could be anything but a radio sonde.

RW: How did you get the report that the material was out there?

SC: That I don't recall. Looking back on it, I imagine somebody called the 509th. The 509th called Marcel and said there is something over here, wherever. and then...more and more thinking back on it now he must have been...I must have been with him...."lets go out look and see what the hell..."

RW: Did you just make one trip out to the area?

SC: I can't recall ever making more than just that one trip.

RW: And you think it was you, Marcel, and Rickett?

SC: Well, I not sure it was Marcel but I know Rickett was...

RW: Rickett was there? When you got back with this stuff you turned it over to the Intelligence Office. What happened then?

SC: Nothing, as far as I'm concerned. I don't think I even made a report. Our CIC had gone by... 700 CIC was the CIC Headquarters.

RW: 700 CIC was the Headquarters?

SC: Yes, I don't think I even made a report to them, which I normally would if there was anything at all unusual.

RW: Do you remember the newspaper? It actually was, I think, July 7, 1947, where this now famous newspaper says they found a "flying disc" in Roswell? That was actually the Roswell paper, that was the first one. How about you, Mary, do you remember that at all?

SC: I don't remember it. We took the local paper to get some weather reports.

MC: We were so new there. In fact, I think I had just been there just maybe just a few days because I had been up to my sister's wedding and I don't think at that time we might not even been taking the paper. We heard no...

SC: I don't remember anything in the paper.

MC: We heard nothing. Of course, we didn't associate with people on the base, either.

RW: Yeah, I understand.

MC: We were brand new. Jesse and Salazar were best friends. At that...starting about the first of July on.

RW: After you found this, Sir, do you remember any sort unusual activity occurring? Like a big military alert, or people going out to the base and large numbers of high security?

SC: No. The reason I wouldn't have been involved in anything like that, if there was any activity like that, I was Counter Intelligence Corps, this didn't have anything to do with counter-intelligence. It looked to me, somebody lost a weather balloon. I couldn't care less...tough luck.

RW: But when you went out and saw this material, there was no doubt in your mind that it was some sort of man made material? And, you thought at the time was a weather balloon, some sort of balloon?

SC: When I first saw it.

RW: When you said the wreckage wasn't very much, could you, was it as long as your house here, or just a small little clump?

SC: Maybe as long as this room is wide.

RW: So, twenty feet maybe?

SC: Some here, some here, some here. No concentration of it. No marks in the ground, dug up, anything hidden, or anything like that, just out on the territory around the bottom of New Mexico, just good for growing sheep - they don't eat too well.

RW: Yeah, I don't imagine. They probably have to eat on the run out there. Do you remember at the time the article or the photo of General Ramey and Marcel holding up a piece of material? Have you seen that since that time?

SC: Oh yeah, I have seen it, yeah, but at the time I don't recall seeing anything like that.

RW: In that photo, actually there are four separate photos there, Marcel, I think in two of them, is holding up material. Does that look like the material that you picked up out in the desert? Actually it's in this book if you don't mind...

MC: I was going to say that I think it's in there.

SC: I don't remember... Yeah, Yeah, that's...

RW: The first picture is actually with Jesse Marcel and that's General Blanchard and...

SC: I think this was taken at the Headquarters at Carswell.

RW: Yeah, that's right. That's correct.

SC: And I obviously... Marcel took it to Fort Worth. Yeah that's the...

RW: Yeah. That doesn't look like they substituted anything from what you found?

SC: No, No.

RW: Is this about the extent of the material? I realize you can't see all of it in any of the pictures. Or was there large... could you fill up an airplane with it?

SC: Oh, good God! You couldn't fill up (unintelligible) with it. Yeah, I can't tell what those sticks look like. But, as I recall, to me they look like bamboo or some sort of very small lav type material ripped out.

RW: Could you break them or bend them, or...

SC: I didn't try.

RW: O.K.

SC: It was someone else's balloon as far as I was concerned. I didn't want to fool around with it.

RW: After you picked that up and you turned it over to Marcel, did you ever hear anything more about this? Did people from Washington come and talk to you about it? Did you have to swear any security oaths or debriefing statements?

SC: I don't remember anybody from Washington coming there. It's possible that somebody came over to talk to Marcel that I didn't even know about. To my knowledge, no. Certainly nobody from Washington. I would have, I think, remembered that. Someone from the headshed coming down and talking to me. Certainly, I would have. And I was not sworn into any secrecy ever about any of this stuff.

RW: So, as far as you are concerned, none of this was ever classified? There was no attempt to, I use the word, "cover up" this information or to classify it?

SC: Well let's put it this way: as far as I knew, I never heard anyone say, "Don't talk about this and its hot stuff." I think Marcel, would...I'm sure he would have told me something.

RW: Would he have? Did he ever say anything to you after this incident occurred until the time he left? Or, anywhere up until the time he died?

SW: Oh, Rich, dealing with him there in the office or the next office to him so he probably said something about it. That he had taken it down to Ramey or something. But, nothing that would, you know, stick in my mind of importance. Do you understand what I mean? If he had said something like, "I took it to 8th Air Force Headquarters, General Ramey was excited; they were going to take it to Wright-Pat" (or wherever they allegedly took it). Oh, I'm sure I would have remembered that.

RW: It had been alleged in a number of books, including the one by Randle and Schmitt, that there were a number of airplane flights back and forth of C54's and B29's going into Wright-Pat and Kirtland, or to Fort Worth. Back and forth, loaded up, with very tight security, hauling this wreckage. Do you recall any of that going on?

SC: None...Nothing.

RW: And then it's indicated (and not directly quoting) Some counterintelligence people from Washington or Andrews (as they said in the book) had come out there and apparently done photographs or crime scene searches or whatever. There was nobody else out there from CIC or Counter Intelligence Corps that you knew of? Other than Rickett?

SC: Not to my knowledge. Not to my knowledge. I made a booboo. I said it was 700 C at Bolling. I believe now that you mentioned Andrews, it could have been Andrews. But no nobody came out. Maybe they did, maybe they didn't talk to me. CIC did some crazy things in those days, shuttling some people around.

RW: But it would have been likely, had you been involved in recovering something kind of special that they would have talked to you?

SC: Yeah, I think they would have asked me, "Cav, what did you see" ...right.

RW: Did Rickett ever talk to you about this again?

SC: No...I don't think so. I don't think so. Right about that time just before OSI was formed and we all were absorbed into OSI. I think he went on a special undercover job up to...maybe somewhere to an Air Force Base up here in Washington.

MC: Fort Lewis, I think he...

SC: Was it Lewis or McChord? I don't remember. Anyway, he went on to an undercover assignment, and that's what I said about CIC doing some crazy things. They didn't even tell me. I was his boss locally and they didn't even tell me that he had gone up. He used to be a mechanic at one time, Rick did, in the Air Force; the Air Corps. I think they wanted to...they were having some trouble with their planes being what they thought were sabotaged and they asked him to go up there and try out the machine...like an airplane mechanic, which he could do pretty good. Outside of that, I don't know of anything that Rick did.

RW: One of the things that was mentioned in this book...and I don't know how much you read it, is that Rickett some time later that Fall apparently went with a scientist by the name of Doctor LaPaz, and he accompanied him and they went around to various places. Dr. LaPaz was a well known person...

SC: I knew of him. I never met LaPaz personally, but I knew what he was.

RW: Did Rickett go with him that you recall; accompany him around?

SC: He could have, but it certainly didn't stick to my mind. It wouldn't be for any extended time I don't think, because we needed him around the office.

MC: The Ricketts were friends of ours too; and his wife and I. I don't remember Mack ever saying anything.

SC: Mack was his wife.

MC: ...that he was gone for a long time.

SC: He could have, but Rickett would go off the deep end every once in a while. He was a fantastic story teller. He worked for an insane asylum up in the Washington DC area. I think his wife worked there, also. He would sit around and tell some of the most hilarious, ridiculous stories about things that happened in this nut house, so to speak.

RW: Was that St. Elizabeth's? That's the big government mental institution.

SC: I don't know. It's in the Washington DC area. I forget since I was there in the Washington area for awhile but I never did get acquainted with the insane asylum.

RW: It's always best to keep it that way.

SC: No, well I put it again, he might have gone off with LaPaz for a few days, but I can't imagine what excuse I would have been given as to why he'd be out goofing around with an astronomer. LaPaz was a well thought of individual in New Mexico and, I imagine, all over the United States. He had quite a reputation.

RW: He did quite a bit of work for the Air Force, as I found through research.

SC: Contract work or something...Yeah.

RW: But there was nothing that you knew of that he did as a direct result of this incident on the stuff that you recovered out there?

SC: No. Of course, I could have been held in the dark about it; but as far as I know, no.

RW: O.K. I went through and pulled out wherever, in this book UFO Crash at Roswell by Randle and Schmitt, this is a 1991...I pulled out wherever you were identified. They never identified you by name except in the credits when they interviewed you, but they always referred to you as the "Senior CIC man" and "Senior CIC agent". They identified Rickett and Marcel, of course, by name. There are many things that are in the book that people said that you said or implied that you said, without directly saying that "Colonel Cavitt told me such and such."

SC: Yeah.

RW: I pulled a couple of these out and just ask you if you can comment on it to see how they ring with your memory of the incident. "The second fellow we interviewed" (this right from the front on page six) "was an agent in the counterintelligence corps. He accompanied another intelligence officer on the initial trip to the crash site and we believe wrote a report of the incident for his superiors in Washington" ...implying that was you, since you were the senior guy.

SC: I'm just reading this end quote "book." No, No. I assume...I assume when I read this thing for the first time that they sent me a big deal, you know...

RW: An autographed copy?

SC: An autographed copy and all that. No, I didn't say all like that.

RW: On the next page, on seven, again referring to you: "At first this intelligence agent refused to admit that the event had occurred at all. There had been no newspaper story, no fuss, not even the recovery of a weather balloon. After much prodding, that he was going to admit that something came down and was recovered, and but that was as far as he would go. He admits no

personal involvement even though other reliable sources gave him a central role. That kind of sums up everything in...

SC: No. No. From the very start, when these clowns started hounding me, Randle and Schmitt, I told they accused me of covering up and having signed a security...

RW: Berlitz and Moore?

MC: Now, you see, he was here at the house. I've heard numerous deals on the radio when I'm listening at night and all this, all of this, has been...

SC: I told these guys when they first talked to me, I said: "I have taken no security oath. I'm under no obligation to not tell you anything, because, as far as I was concerned, it wasn't anything other than a weather balloon." And, I said: "I want you to quit inferring that I am staying silent under an oath of security." And, finally, I think about two years, later Randle told me: "Hey, we believe you." It was getting ridiculous. I was getting so sick and tired of this garbage.

RW: Yeah. I sensed a little of reluctance when I first called up and... "like, Oh no, here we go again" type of thing.

SC: I did, really.

MC: He gets so many phone calls. I usually answer the phone and say: "Who's calling please?" And then, I don't know whether... come and write a book...

SC: You've hear of Pflock?

RW: I know who he is, yeah.

SC: He's our chief debunker. I lean toward him.

MC: Rich, have you got, read, Randle and Schmitt's latest book?

RW: I've not. I've tried to find it and I haven't been able to find it.

MC: It just came out in April.

SC: They haven't sent me a copy yet. I think they are mad at me.

MC: Didn't they tell us that they found some new information and it wasn't at the spot that...

SC: Right. Right.

RW: Yeah. As I understand it, the new information (and this may not be quite right, since I haven't read it, this is hearsay) is that there was this crash... what they call the crash site,

apparently, where you were at and picked up this material, and then there is another one 120 miles or so away.

SC: A ricochet.

RW: Yeah. Which at one time was on the Plains of San Augustin and now it has apparently in this new book been changed to a location closer to Roswell. And, that's where these bodies were supposedly recovered. I think their new research has to do with that aspect of it.

MC: Well we haven't seen it, but I know it came out in April.

RW: O.K. Lets see; also on the same page it said: "The CIC responded to the phone call. Jesse Marcel was one. "The intelligence and the CIC responded to the phone call. Jesse Marcel was one of them. Colonel William Blanchard and the other officer suggested that Marcel and CIC agent accompanied Brazel to the ranch to see what was there." Brazel, of course, was the farmer who apparently came in and made the original report.

SC: Yeah. To the best of my recollection, I never met the rancher, Brazel.

RW: O.K., because as I go through here you'll see that you're accused, I say "accused"; claimed, to have been with him on a number of occasions and basically, it was alleged that the Army Air Corps had imprisoned him, if you will, for about a week and kept him away from everybody. Not that you personally did, but the Army Air Corps in general: "The trip to the ranch took the rest of the afternoon...they were forced to stay in a small cabin with no electricity no running water...the next morning they headed out into a field were Brazel had found the debris." So, this would have been you and whoever else accompanied you.

SC: Totally, made up, or fabricated, or whatever. I didn't have any experiences like that of spending the night out on the ranch.

MC: Eating a can of beans...

RW: Eating beans...yeah, that is, in fact, mentioned in one of the...

SC: Yeah.

RW: O.K. Now this: "Marcel would later say that the material was like nothing he had ever seen and the metal was as thin as newsprint and as light as a feather. It was flexible but very strong. He tried to dent it with a sledge hammer but Marcel and the CIC agent tried to burn it but it would not burn. It was lighter, stronger and more fire resistant than any of them had ever seen. Marcel, along with the counterintelligence agent picked up as much as they could and begun loading it up in Marcel's convertible and the counterintelligence agent's Jeep Carryall vehicle with a rear box." So, apparently, according to Marcel's version of the story (and I don't know when this was given, sometime after 1978) you hammered on it and tried to rip it and did other stuff with it and it was like nothing you had ever seen.

SC: No.

MC: I remember we were at the Marcel's house and I can remember Jesse had something had something on the pad...and then went out to...and took it out onto the back porch. And, I remember that (unintelligible)

RW: Was it some sort of material, metal material or...

MC: And it's in one of these books and then they...and as little Jesse said, they cemented over that...

RW: Oh yeah...O.K. I remember that.

MC: I can still visualize the stove of where they were and we were out there.

SC: No, he could have had some there at the house.

MC: I honestly do remember that.

RW: O.K. Was it like tinfoil type stuff or do you recall...

MC: I don't remember.

SC: I remember. He could have had some there at the house and it was, and it looked like a foil of some sort, and he could have tried to burn that and it didn't burn very well, I don't know. I don't remember that. I can't why imagine he'd be beating on it with a hammer for, but it doesn't make sense.

RW: One of the other things that I'll just jump to real quick was that you had tested the material with a Geiger counter. Did you ever have a Geiger counter?

SC: No.

RW: Now that's not standard OSI/CIC issue that I was aware of.

SC: Honest to God, no!

RW: I've never seen a Geiger counter myself, but I didn't know if you knew what one was.

SC: I had never seen one...what CIC would...No, absolutely.

RW: That comes a little further...did you have a Jeep Carryall, was that...?

SC: No.

RW: When you went out to the site, do you remember how you got out there?

SC: I don't. It was a possibility we could have taken a Jeep. Marcel had gotten a Jeep...Marcel had gotten a Jeep.

RW: Just a regular Jeep?

SC: Yeah. out of the motor pool, but certainly no Carryall.

RW: O.K. Then it said: "After Marcel had gone to Fort Worth and came back Marcel challenged the CIC man who had remained at the base asking to see (your) report. Marcel was told that the report was now classified and he wasn't authorized to see it and it was on its way to the Pentagon if he had a problem with that he could take it up with the Pentagon."

SC: Negative.

RW: O.K. "Blanchard, who was still at the base...ordered Marcel to accompany the rancher back to Corona," You said you never saw...and then you said you were going to...you never saw the rancher from what you told me previously?

SC: No.

RW: Or dealt with him personally?

SC: I certainly don't remember ever meeting Mr. Brazel or Brazzel, whatever his name was.

RW: O.K. Here is where they talk about the Geiger counter. You have already said that you didn't test anything for radioactivity because you didn't have anything to test it with.

SC: No.

RW: Oh. Then Marcel said there was a wire-like material that looked like monofilament fishing line. Do you recall any of that?

SC: Oh, no. It sort of tickles a little bit of remembrance of, you know, of all this junk foil, I would call it, and the sticks and so forth. There probably was some line of some sort there to hold it together, I guess.

RW: What they...

SC: What was supposed to have been with that I...

RW: Well where they go with that, later on, is that this is where we developed fiber optics from. That this is, was, in fact, fiber optic cable which was, of course, unheard of in 1947.

SC: Yeah.

RW: Yeah. We were still dealing with copper wire. You can bend light with fiber optics, and that's where we got...we (the world) got fiber optics from that material which we reverse engineered. That's the implication.

SC: O.K...I didn't see any of that, but there could have been some wire or nylon or something.

RW.O.K. "Together Marcel and the Counterintelligence agent walked around the entire perimeter looking at clues. It took them most of the morning to do it because of the size of the field they started collecting material at the outer edge of the field and moved in toward the center." So, this implies that this was a pretty major undertaking that you and Marcel - in order to examine all of this stuff took a long time because of the volume of the material. This is what I imply from that.

SC: If it were true, you know, the size of the rancher's field they are sometimes a section that are miles square, maybe larger. No.

RW: But there wasn't material all over?

SC: No.

RW: You are right. You could walk into New Mexico forever with...

SC: Oh Lord! Ranches are big out and down in New Mexico. No,...I didn't spend any extended time down there at the site.

RW: O.K. Then, on page 55, it talks about there was discussion that this may have been a foil parachute from a V-2. Were you aware that they were testing, we were testing, V-2's at that time out of White Sands?

SC: Oh yeah. I went down to a couple of launches. One abort and one launch.

RW: O.K. But there was no doubt in your mind that this was not part of V-2 or any other type of rocket when you saw the debris in the field?

SC: No. No. I never had any idea that it was anything with the V-2. They told us down at the V-2 site that they weren't shooting them toward Roswell, anyway. Of course they sent up a few of them and they had an awful lot of aborts. They had to detonate them or pull the trigger...shortly after they got off the launch pad because they went awry, shall we say.

RW: Yeah. Apparently one went awry and went into Mexico, too. They already found that later.

SC: No, I had no idea, no suspicion, that it came from Holloman. Holloman is that...

RW: It was White Sands.

SC: It was White Sands. Holloman base. Alamagordo.

RW: O.K. "Marcel would take some of the sample to Fort Worth to show Ramey. In the mean time, the CIC man would head back to the crash site with some MP's showing them exactly where this field was and to round up the rancher. There were now additional questions for him." This implies that after you came back you took some MP's and went back up there.

SC: I went back down there? No. No.

RW: So you were just there the one original time and you didn't go back with any MP's, the rancher or anybody else?

SC: No.

RW: O.K. "Marcel would go to Fort Worth and the CIC man would stay behind to lead the clean up detail at the site another reason they send Marcel was the CIC had their own chain of command that reported to Kirtland in Albuquerque rather than Fort Worth and although Blanchard outranked the CIC agent (meaning yourself) a phone call to Kirtland could have gotten his orders overturned." So, this implied that you reported to Kirtland, which I know, of course, we did later when District 17 was formed.

SC: Yeah, OSI.

RW: Yeah, but at that time you didn't necessarily - the CIC did not report to Kirtland?

SC: No. No. Kirtland was just another Air Base as far as we were concerned down at Roswell. They weren't part of SAC. They weren't anything to do with us CIC - wise or nothing.

RW: O.K...Here is where Rickett comes into the picture, and Rickett makes a number of claims that basically...I don't know if Rickett is still alive or not.

SC: No, Rick is dead now.

RW: O.K. Because I...(Unintelligible)

SC: No, he is dead and I think now maybe his wife might be now. We used to exchange Christmas cards up until a couple of years ago when he died. Two or three years ago.

RW: So, he died two or three years ago? OK. He makes a number of claims that, at least Randle and Schmitt; and when I say "Randle and Schmitt I'm not trying to pick on them or to imply that

they're doing anything different than any of these other people...they just happen to have the most current stuff on the street.

SC: Trying to write a book.

RW: "Rickett, the Provost Marshal"...excuse me...page 61. "According to Lewis Rickett, one of the CIC Agents, he, with the commander of the CIC shop, drove a staff car from the motor pool and returned to the crash site. They were followed by a second car carrying several MP's. An MP did ask for identification because neither of the counterintelligence men were in uniform." So this would have been the second trip, which you said you did not take. But, he did apparently go with you on the first trip?

SC: Rickett?

RW: Rickett...Yeah.

SC: Yeah.

RW: And I assume at that time, just like in OSI, you did not wear uniforms for the most part?

SC: I didn't even have any uniforms.

RW: Yeah. I know the feeling. For the first eight years in OSI, I think, the only uniform I had was my mess dress. "But Rickett, the Provost Marshal and the senior intelligence officer walked into the debris field, examined the wreckage. Rickett said it looked like metal and asked if it was radioactive"...and you said it wasn't. That was page 62. This is on the, you would have been on this now second trip again, O.K.? On page 63: as they prepared to leave the crash site the CIC agent told Rickett: "You and I were never out here. You and I never saw this. You don't see any military people or military vehicles out here. Rickett agreed saying yeah, we never even left the office." Now that's the little quote they have out also in the..

SC: Now what page is that on?

RW: That's on page 63.

SC: 63? No. Now I could have said something facetious like that after we got back to the office, after I was convinced that it was a weather balloon, or some such contraption. I didn't know, naturally. I could have said after we got back to the office: "Rickett, this has been a big boondoggle. I don't even want 700 CIC Headquarters to know we wasted our time on it. Forget we ever did it." I mean I could have...

RW: O.K.

SC: said in a facetious way: "Lets make out like it never existed, because we're wasting our time." But I didn't say it in such a way that it would be this is so highly classified we won't have anything to do with it.

RW: O.K. On page 86, it said: "The counterintelligence people came into Roswell on a special flight from Andrews Army Air Field on July 8.". So that, to me, implies that this would have been your CIC Headquarters also sent some other people out there.

SC: Yeah. Right. That's what it sounds like.

RW: Yeah, but you said you would have known if anybody from Washington had come into your area, sort to speak. More than likely.

SC: Well I certainly hope so. We were secretive and so forth, but I think they would have touched base with me, since obviously if they talked to Marcel he would have probably said something to begin with, but they would have wanted to know what I knew. No, I...

MC: Of course Jack Williams was there. Jack could have been on some of these...

SC: No Jack was young and sort of scatterbrained, as you well know. And I never relied much on him for anything. He's the type that would read a book while he was on a road trip driving his car. He'd finish a book while driving...

RW: While he was actually driving?

SC: Oh sure.

RW: Sounds like the people driving on 95 in Washington there in the traffic jam.

MC: There weren't many people on the road.

SC: Jack rabbits. No. No disrespect to Jack, but he just wasn't a solid citizen as far as I'm concerned. And if anybody from headquarters CIC came in I'm positive they would have checked in with me.

RW: O.K. The page that's kind of devoted to you, if you will, is on 171 and it said that "Schmitt suggested the possibility that the crash had been a V-2 or A-9, (which is one of derivatives of the V-2, that we were playing with at that time). Schmitt asked if there had ever...if they had ever retrieved anything like that anywhere in New Mexico. Never, he said any rocket going off course would be destroyed by the range officer and they wouldn't have wanted to risk injury to civilians on the ground. Randle asked if he remembered any talk at all about a flying saucer. He (meaning you) insisted that nothing at all happened. The former CIC man hadn't heard any rumors about a crash. All this, including the story shown on "Unsolved Mysteries", was a bunch of garbage. Schmitt and Randall spent two hours with the man, he told them that any reports he wrote in the

normal course of his duty was sent to Washington not 8th Air Force in Fort Worth. He was attached to the 509th, but his chain of command was different than the 8th Air Force, that's..."

SC: That's one of the few true stories they had in this book.

RW: "In fact he talked about many things willingly. He said the ranks of CIC agents were all classified at the time" (I know that's the way it was in OSI for years) "It didn't look right to have a Master Sergeant investigating a Colonel so no one on the base, except for a few clear to know, had any idea of what he or any of the others were. (Of course, that's the way we did business.)

SC: True.

RW: "He provided names of others who might be able to help and he described his normal unclassified duties at Roswell, but according to him the crash and recovery had never happened. There was no investigation on the Foster ranch, no mystery flight, and no discovery of alien bodies, nothing." Now we are getting to the part were they make you sound like somewhat of a conspirator. It said, "Randall said he and Schmitt had literally two dozen witness' to the special flights out of Roswell and the special clean up operation on the ranch. Something must have happened, the CIC man finally conceded, but I don't know what it was. As they left, the CIC man asked them, if you boys found something that affected national security would you keep it to your self? The former CIC man grins, and said 'very good'." So, somehow, by that remark, I imply that this was kind of, "I know something that you guys don't and if affects national security so we're not going to tell you." That's the way that I interpret what they wrote. Because, the rest of if just kind of recounts the way we did business, even when I came into OSI twenty years after that.

SC: You think they're talking about me there, "the former CIC man?"

RW: Yeah.

SC: If I said that, I probably said it really meaning that if these guys trying to make a buck writing their sensational book run into to something that really affected national security, I meant don't put it in a book.

RW: Yeah. OK.

SC: Turn it over to somebody.

RW: But you weren't implying that this incident affected national security and you weren't going talk about it?

SC: Oh, no! No way.

RW: OK. I see you have some materials you brought out here. That looks like one of you basic agent classes. Is that one of your basic agent classes there?

SC: No, that was the old District Office 17, OSI.

RW: Oh. OK.

SC: So this is after. Dr. Pflock sent me that. I got it out when Pflock sent it to me. This is Rickett.

RW: OK.

SC: And that is Jack Williams and that's old Cavitt. Down on the lower left.

RW: Oh. OK.

SC: That's me, and these are the two boys that were with me there at Roswell. I have them all identified and who's no longer with us. This thing that Pflock sent me, this picture. It says that Jack Williams is deceased. No wonder why somebody didn't contact him. I didn't even know he was dead. We were not friends. He was a Staff Sergeant, and a good honest kid, I think.

MC: A smart guy.

SC: What?

MC: Really, he was quite intelligent.

SC: Oh, yeah. He read. Read books while he was on road trips.

RW: Well the names I recognize from here that were still: are Doyle Rees and John Stahl.

SC: Doyle is still alive. I have a letter from him.

RW: I think he's in the Association of Former OSI Agents.

SC: Yeah. Right.

RW: And I am also a member of that so I see a lot of that. So, I see a lot of their letters and stuff, pictures that they send.

MC: We get correspondence from Doyle. Chris' son called him not long ago. He had a hole in one on his eightieth birthday.

RW: Oh, is that right. Was it his first one?

SC: I'm sure it was.

MC: Nice, nice man.

SC: He is a nice man. And a nice family. I don't know what the date on that is. Letter from Doyle, it says: "When you call the press conference to tell the world, let me know, because I want to be there." So, I just got reams of this stuff from books.

RW: Do you mind if I look through that real quick?

SC: Oh, heavens no. I got it (Unintelligible)

RW: Stanton T. Freidman?

SC: Freidman or whatever.

RW: Yeah, he doesn't like me a lot. He writes me nasty letters.

SC: He called me a couple of times. I could hear him a little bit, but it wasn't good enough for me to try to strain my brain. He apologized a little later. He wrote me back and said sorry we had a bad telephone connection. On your end!

RW: O.K. Here is the stuff about Schiff that I referenced earlier. Asking the GAO to look at this. Karl Pflock...

SC: You know, you can look at any of that. You can have copies. As a matter of fact I don't know what I'm going to do with it.

MC: Oh, your sons want it.

SC: Oh, I don't know.

MC: Oh, yes they do. Joey said last night maybe Dad could make a fortune out of being a hero.

SC: Well, if I wanted to make a little money I could have imagined a lot of things and cooperated more.

MC: Well, that's what Doyle said.

SC: With these authors and so forth I could be given royalties for a long time.

RW: Oh, this was out of the Global Reliance. I don't remember seeing this in there. Oh, Karl Pflock wrote this for the Global Reliance.

SC: Have you ever seen that clipping?

RW: This one on Rickett here?

SC: Yeah.

RW: No, I never saw this.

SC: I don't know what that is from.

RW: "But at least one surviving member of the recovery team actually handled the material, (Unintelligible). Eighty two year old Lewis Rickett. 'Cavitt had been there the day before, but he wouldn't tell me what was going on until we got there.' With armed troops standing guard Rickett wandered through the security phalanx and saw metallic debris scattered in an outer circle with a diameter of 25, 30, or 40 feet."

SC: It must have been Rickett sort of flipped a little bit. See this was something that he...an interview he had shortly before he died, I think.

MC: Well, when they interview Rick he was older and trying to make people remember things that happened umpteen years ago is pretty hard.

SC: I have probably received an awfully lot more than that, Rich, and threw it away. Sorry.

RW: So these people have been pretty much tracking you down on a regular basis then?

SC: Oh, yes! Mary can verify that. She said she had been home when she got telephone calls.

MC: I have talked to some of these fellows myself.

SC: Yeah, if I'm not here she talks to them. Blabber away, and she gives it right down the line. "Have they ever tried to influence you to say that I am lying or holding anything out?"

MC: No. I just tell them that you are telling the truth.

SC: They don't believe you when you tell the truth.

RW: I guess they don't. That's the problem we have with this whole line of inquiry and attempt to look this. It is very hard to prove the negative. It is hard to prove that something didn't happen, because you don't document stuff that doesn't happen.

SC: No, it is pretty hard to, difficult, but a good imagination can. These boys have it.

MC: The picture that was in the Roswell paper, as I said, we had just gotten there so we probably had to start subscribing to it. But nobody passed it around.

RW: Well let me tell you what's in the official records that we found so far. So you will have feel.

SC: Please, do.

RW: We did this, as investigators would, logically. We figured, "where would this stuff be"? So we went to all the different records. Working for me I have a group of reservists who are declassification experts. They are excellent researchers. They spend their whole time dealing with records, so these people know where all this stuff is buried. So, we have been to all the major record centers. The Archives and nuclear records (ranging from unclassified to TS nuclear stuff because the 509th was the only nuclear unit in the world at that time. So, some of these records were TS and still are.) That is because they have never been declassified. Anyway, we found that there was no airplane crash that could account for this. Just to show you how unsafe it was to fly at that time, there were six airplane crashes in less than a month in New Mexico alone in 1947, and that doesn't include the rest of the United States. We were lucky to have six.

SC: Remind me to double back on that. Go ahead with your story and I'll tell you another little story.

RW: We found no indication of a V-2 launch that is not accounted for. There was one scheduled on the 3rd of July and that was scrubbed. There was no indication that there was some sort of nuclear accident at that time where we either dropped a weapon or did something stupid, which we had to consider during that period of time, but there is no indication of any of that happening. Weather balloon themselves are; (although they have a "return to" type of thing on them) supposed to crash. I mean, they go up and then sooner or later they're going to come down. Right? Now what we did find, however (and I not implying what you saw up there), but it's a possibility. There was a project run by New York University, out of Holloman at that time. It was a balloon experiment that lasted for years. But at the time a portion of it was Top Secret. It has since then been declassified. It was called Project Mogul.

SC: Never heard of it.

RW: Mogul was designed to run balloons at very high altitudes with extremely sensitive acoustic sensors (what we were looking for were nuclear test on the part of the Russians, because we thought the Russians had gotten the bomb) so you needed high enough and far enough so, and at a constant altitude, we could see...because there were no satellite (Unintelligible) they had a couple Mogul balloons and several of those are unaccounted for during that period of time. They are very large in the sense that some of them were up to 600 feet long, not one gigantic balloon, but a series of balloons, because as they went up to altitude some of them broke off, and some of them dropped ballast and they were very sophisticated. They had a lot of tin foil on them and a lot of different things. Mogul is a possibility. We found a couple of researchers from New Mexico that we are in contact with now because they kept private records in some regards. But, of course that was a Top Secret project at the time and we don't know if Blanchard knew about that or not: (we don't have any indication that he did). And that they used the weather balloon in an attempt to cover the other balloon which was a classified project.

SC: Yeah, that is possible. I didn't know about that particular thing. I just knew weather balloons went up and measured. This was my first impression. I didn't know anything else, so O.K., that's it, forget it. The thing that disturbed me is why they cannot shoot down this story about the little bodies and so forth that were allegedly taken to Wright-Pat or some place.

RW: Wright-Pat, right.

SC: And put in a sealed (unintelligible) or so forth. And the only thing, Rick might have gotten confused about something. You mentioned crashes. We had one there at Roswell. They practiced this air to air refueling, which was just, I think, getting into real high-tech stuff as far as I knew.

RW: B-29's?

SC: Yeah. And they were refueling them. We had one rather, rather hell! Where the plane that was being refueled for some reason or other pitched up when they were either getting to attach the cord, or the other one came down, which doesn't sound logical, I think it's more apt to have went up. One or both of those planes crashed. I forget what direction it was up from Roswell, but I went out to that crash at the request of Marcel; maybe Blanchard, and I probably took Rickett with me. We had bodies all over the place, and it was a sad thing. We recovered some fingers, of course, there was one hell of a big fire after it happened. I collected a bunch of hands, fingers and so forth, trying to identify them. At the time I thought this was sort of stupid. They had a list back at the Operation Office. Other than identifying body parts so that some guy's wife would know that she had part of her, used to be, former husband. And I don't remember where we sent those things for identification. I remember going into the office after that trying to get prints off of these old shriveled up fingers and so forth. What good it would do, I don't know. I didn't know then, but I was wonder if maybe Rick got confused that maybe this was some of the bodies. I doubt it, but it is just a possibility. But I don't know why they can't trace down those bodies.

RW: Well, that is the ultimate part of the quote "cover up" that we're involved in. You and I would probably think as OSI agents if you recovered a body that is unusual, that would generate a whole bunch of paperwork. We are a paperwork society. I mean, it may be classified with a bazillion stamps on it, but it would generate a lot of study and things. And we have not been able to locate one piece of anything to indicate that is so.

SC: It boggles my mind that we would not be able to find anything. The Air Force having the...I mean we were close knit and it seemed that there had to be a trail and pick up and eventually end there in that grip, or whatever they put these bodies in.

RW: But did you ever hear of any talk of that type of stuff when you were at Roswell?

SC: Down there. No.

RW: When did all of this first surface, in your life? After you picked up the original stuff and you went on to your career. When did the UFO part first surface in your life?

SC: You mean this sort of stuff?

RW: Yes. Was it with Berlitz and Moore?

SC: Our son sent this book to us.

RW: This is 1980, I think. Yeah 1980.

MC: A lot of that has been debunked by the other two guys.

SC: Well, I don't remember where Joey got this book.

MC: They bought it, they bought it. And he came by to see us and we had just back from fishing and you had one of your cluster headaches. And I did most of the talking here, because Cav was having his cluster headaches.

SC: I had another cycle of cluster headaches. Similar to migraine.

RW: I understand those are really painful.

SC: I am about to come out of it, although I had one last night, and I was awake all night long.

MC: Don't you think that is it. I never even gave it a thought.

RW: Until Mr. Moore and company showed up, around 1980 time frame?

SC: Yeah.

MC: 16 September 82 that he was here.

RW: O.K. Now from my research (not of AF records, but of popular literature records) Friedman is the guy who ran into Marcel down in Louisiana in 1978, because Friedman had been a UFO researcher for years. He ran into Marcel and from his interview of Marcel it got Berlitz and Moore interested, and that's when Marcel then started talking to all of these different people. And then it has kind of grown since then.

MC: And then of course, it's too bad apparently, you see little Jesse was about 11. Cav never told me anything. He said I'll never tell you anything then you won't spread anything. We always wondered how little Jesse knew so much. To us it should have been business. Neol (Marcel's wife) apparently was not able to give any information after Jesse died.

RW: Yeah. The son is mentioned in a number of publication, because he claimed his dad brought this stuff to his house and they hammered on it and...

MC: Which I remember seeing.

SC: He was a smart little devil, his son.

RW: He is a doctor, I think.

SC: Is he is a PHD type of doctor or a Medical doctor?

RW: Yeah, I though he was a medical doctor.

MC: He is an MD, but his brother was medical type technician.

SC: They were a smart family. I always thought Marcel was just a little on the outer scale.

RW: Since you were friends with both Marcel and Rickett, is there any explanation that they would (in your mind, since you knew them) tell these stories and get this interest generated?

SC: No.

MC: I wouldn't think purposely, would you darling?

SC: Not purposely, no. I gave you a little insight on Rick, he could sit and tell stories that last hours.

MC: They were visited by a lot of people, more than we were. Handier to some people, being in Florida where they were. She would write on cards, so and so has been here, but I don't think purposely they would try to make up tales for being heroes or glorifying anything.

RW: Let me ask you officially for the record. Did you take any kind of security oath, promise, sign anything, or verbally agree to anything not to talk about any of this, that occurred in New Mexico?

SC: No. I told you that awhile ago. I'll take an oath on that. I swear.

RW: O.K. Has anybody in the US Government, the Air Force, or anyone connected with the Government, ever threatened you if you said anything about any of these incidents that something would happen to you, your family or anybody else?

SC: No. No way.

RW: O.K.

SC: I am telling the truth, and I have told all of these other people the truth. That, I don't know anymore than what I told them, and I don't know anything about any "little men", or anything. I am a pretty stupid person, when I say "I don't know anything."

RW: Well, I appreciate having to ask you some of these questions, even after you told me that...

SC: I know you have to.

RW: But, we want to do this officially, because as near as we can tell nobody ever has before.

SC: I certainly wish you good luck. I hope you can convince these people.

RW: Well, it is going to be difficult, because like I say we have nothing other than this one formerly classified project that was occurring out there at the same time that was even a little bit "funny", if you will...

SC: Yeah. Had I known about that, Rich, at that time I would have probably hooked it up with that instead of a weather balloon.

RW: But, a balloon is basically a balloon. Some of them are bigger and some of them are smaller.

SC: Some do some things, some of them do others.

RW: One of the things that they mentioned, going back to the balloons for a minute, was what Marcel called "hieroglyphics". It was something that was written or printed on some of the debris. Do you recall any of that?

SC: No. But in reading over some of my other garbage here, I have seen some hieroglyphics. I don't think there were any claims that these were the Roswell deal. Were there?

RW: Marcel claims.

SC: Marcel says so?

RW: However, the day after the original flying saucer article in the Roswell paper, there was a follow up article where they interview Brazel (the rancher), and he described this stuff almost similar to what you did, almost like basal wood type of sticks and tin foil type of things. Then he said some had what appeared to be Scotch tape with little purple flowers stamped on it. Apparently at that time, as near as we can tell, one of the balloon manufactures did use some type of tape that had some sort of flowers on it. It is possible, I guess, that somebody could mistake...

SC: I don't remember anything like that.

MC: I think there is a picture in one of these...

SC: Well, some of these authors, Mary, you got to remember, they will skip from the Roswell incident to something that happened someplace else in the United States and they get a little confusing. You just read through it. I remember something about some hieroglyphics, not on that one. I didn't see anything. I do not remember any writing at all on the thing. But if Marcel saw something, maybe he did.

RW: Did you know Haut, Lt. Haut? The public affairs guy at the time?

SC: Just vaguely. What was he, base information, or something of that sort?

RW: Yes.

SC: Not close at all. As a matter of fact I couldn't even describe him. I got a picture with a tall fellow and I didn't know much about him, at all.

RW: Is there anything else that you can recall or like to add?

SC: I have been thinking about it ever since you called, and said you were coming out.

MC: It is a shame that Don Yeager was in the office with Jess.

SC: Yeah. Is he dead now?

MC: I don't know.

SC: But he won't know a thing, Mary. He wouldn't know a thing.

MC: He wouldn't have known anything with Jesse?

SC: No. No. Jesse didn't trust Don very much. I wouldn't want (unintelligible). He was trying to keep up, but couldn't. He just wasn't a reliable sort of individual.

MC: So Jess probably wouldn't have...

SC: No. No. I don't even think he even talked to Don about it. There was another Captain in the Intelligence office at the time who I always thought was a very sharp individual, his name I don't remember his first name...Carl was his first name, Macamer. He ended up as a full Colonel.

MC: Now we gave Randall their names. We gave them everything we could think of.

SC: Yeah. Carl might be dead now. I always thought he was a pretty smart individual.

MC: Carl was the last we knew.

SC: Somewhere up in the North, wasn't he?

MC: He is our generation. He would have retired.

RW: Did he switch over to the Air Force too, when he...

MC: Who Macamer?

RW: Yeah.

MC: Oh, yeah. He was in the 8th Air Force.

RW: So when you all just went over to the USAF when it formed in September?

SC: He went right along with the 8th Air Force, becoming USAF. We being OSI, well...

MC: He was always Air Force. He was always Army CIC, or was he?

SC: Who, me?

MC: No. No. Carl.

SC: Carl wasn't even in the CIC. He was in intelligence. He was just in the intelligence office there at...He was under Marcel. He was under Blanchard. He was under Ramey. Wasn't that the General's name over at the 8th Air Force, Roger Ramey?

RW: Yeah, that's right. In fact, they named a SAC base in Puerto Rico after him.

SC: The things that Ramey and Blanchard used to! Blanchard came over to the Philippines. I think he was IG in 1963 or 4 and I was District Commander of the OSI District 42 in the Philippines. We had a few chuckles together and...

MC: Do you recall once when we were some place and Roger, and Ramey and I were dinner partners. I think it was Greece. You were on one of your many trips.

RW: Blanchard was the IG, you're right.

SC: He and Ramey, I don't know what he was after the commander of the Eight Air Force, but he and Blanchard use to have some...(unintelligible). Oh Lord! I knew these guys pretty well. No. I don't know anything about any crashed space ships. I don't know anything about any little men.

MC: I am quite sure that we never gave it a thought until that book.

RW: I'll tell you what, if you can indulge me for a few minutes and let me set up my computer. Do you mind signing a statement. I'll make it very short. (unintelligible).

SC: Sure. You bet. Yeah.

RW: And we'll just make a kind of quick summary statement if you can bare with my computer skills here.

SC: I'll prick my finger and sign it in blood.

RW: I don't think we'll require that.

MC: Rich, it always seems funny to us with all these, if these things happened. How can 30 or even 3 people keep something a secret?

RW: Well, I would kind of like to know how they did it, because in my real job we handle all the Special Programs that do keep all the secrets. And we would like to figure out how they do it so we can duplicate it. Because it is very hard to keep secrets, as you well know.

MC: But you see, I am talking about civilians and other people who were in on these bodies going to the morgue and all that. (unintelligible) some grave digger from the funeral home or whatever...

RW: Well, of course, Randle and Schmitt do claim that those people are out there and that they have interviewed them. They list a whole bunch of them. Now, we're not trying to go after them and undo every interview they had done. That is not our point. In fact, you are the only person we have gone out and interviewed, because you're always reputed to be the guy...one of the two or three people that was there picking up the stuff...

MC: And he is the only one that is still living.

RW: That is right.

MC: That is what Doyle Rees said on his post card. He said you better keep this going. If anybody likes publicity as he...(unintelligible)

SC: But what he was saying, all of these guards...

RW: He claims that he had interviewed a number of these people and said that they did guard something and there were a number flights. Now, we have never found the flight records to substantiate that, so I don't know where they have. If they have.

SC: The crew chiefs on the airplane that are making these flights. They went with them. Flight Engineers?

MC: It will be interesting for you to get Randle and Schmitt's last book.

SC: Their latest book? They promised they're going to take it easy on me.

RW: Well, I have tried to find a copy, because, among other things, that have happened, is that people keep changing the dates of when things happened.

MC: And sites!

RW: Yeah. And that makes it very difficult when you are trying to track down records. If you are looking between this period of time and all of a sudden they change the period of time.

MC: Well, when they came here about 14 months ago they sat right there and we became good friends down in Sierra Vista and we would tell them everything we know, honestly. We gave them gobs of names. They sat down and said we have something new, something different. Something happened at this site and it was not on the same date. So, you could have one of your researchers get that book, and research that.

SC: You are very well aware of the good guy bad guy approach of when they interrogate.

RW: Oh, yes.

SC: Well, I got a perfect example of this with Randle and Schmitt. Randle is the outgoing, buddy-buddy type and this Schmitt he'd sit over there and he'd look over at me like this (while Randall is asking me a question), "you lying Cur." Particularly down in Sierra Vista. They just grated on me.

RW: You probably had done that a time or two yourself. You would know what he was doing.

SC: Not really. Let him type up this deal that I...

RW: Yeah, I don't want to take up all of your time.

MC: We have all day. I'll go down and get a hamburger or...

RW: If you don't mind, if you got a plug in over by the table. I need two plug ins to make this thing work.

SC: You need two?

RW: One for the computer and one for the power supply.

SC: O.K.

RW: If that is possible. Although the cords are a lot longer than this one, hopefully.

SC: Where would be the best place?

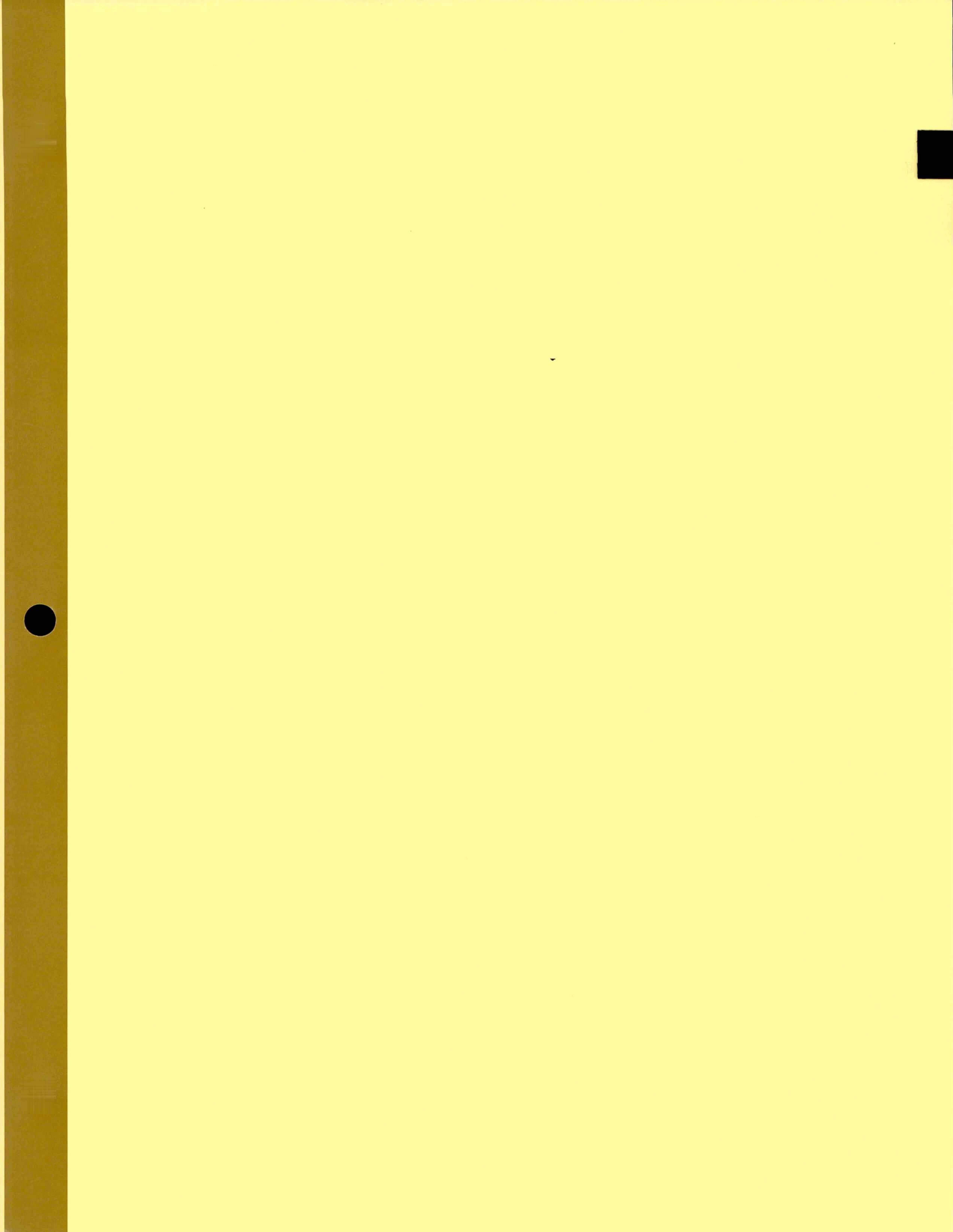
RW: In fact, I can probably...

MC: (unintelligible)

SC: Your cord is not all that long.

RW: (unintelligible)

SC: Is that tape recorder still running?


RW: Yeah, let me shut the tape recorder off. Its about 12:30 here on the 24th.

SC: Well, you're not interrupting anything here.

RW: O.K. We'll just do this. I'll make it a short one which just kind of summarizes what we have already talked about.

SC: Good.

END RECORDING

Interview
LtCol Joseph V. Rogan
with Irving Newton

STATEMENT OF SUSPECT/WITNESS/COMPLAINANT

(THIS FORM IS SUBJECT TO THE PRIVACY ACT OF 1974 - SEE REVERSE)

SUSPECT

XX

WITNESS/COMPLAINANT

SECTION I. STATEMENT INFORMATION

TE	TIME	LOCATION (Bldg/Room No.) AND INSTALLATION	UNIT TAKING STATEMENT	REPEAT (If Known)
21 Jul 94	1630	AFOSI Detachment 401 Randolph AFB TX	AFOSI Detachment 401	OFFENSE
				COMPLAINT

SECTION II. PERSONAL IDENTIFICATION (Print or Type)

NAME (Last, First, Middle Initial)	SSN	STATUS/GRADE
NEWTON, IRVING	471-14-1064	USAF(RET) O-4
LOCAL ADDRESS (Include Zip Code) 222 Diftwind Drive San Antonio TX 78239	DATE AND PLACE OF BIRTH (If Required) 4 Apr 20	TELEPHONE HOME (210) 655-5829
PERMANENT ADDRESS OR HOME OF RECORD (Include Zip Code) Same as Above	MILITARY ORGANIZATION/EMPLOYER USAF Retired	DUTY: DERRS N/A

SPONSOR INFORMATION (Name, Grade, SSN, Organization, Duty Phone)

N/A

SECTION III. ACKNOWLEDGEMENT OF OFFENSES AND 5TH AMENDMENT/ARTICLE 31 RIGHTS ADVISEMENT (Suspect Only)

1. I have been advised that I am suspected of the following offenses:

by _____ (Rank and Full Name) who identified himself/herself as a _____ (SP, special agent, etc.) and advised me that I have the following rights according to the 5th Amendment of the US Constitution/Article 31 of the Uniform Code of Military Justice (suspect initials on line next to each statement).

- a. I have the right to remain silent - that is to say nothing at all.
- b. Any statement I make, oral or written, may be used as evidence against me in a trial or in other judicial, non-judicial, or administrative proceedings.
- c. I have the right to consult with a lawyer.
- d. I have the right to have a lawyer present during this interview.
- e. I may obtain a civilian lawyer of my own choice at no expense to the government.
- f. I may request a lawyer any time during this interview.
- g. If I decide to answer questions with or without a lawyer present, I may stop the questioning at any time.
- h. **MILITARY ONLY:** If I want a military lawyer, one will be appointed for me free of charge.
- i. **CIVILIANS ONLY:** If I cannot afford a lawyer and want one, a lawyer will be appointed for me by civilian authorities.

2. I have read my rights as listed above and I fully understand my rights. No promises, threats, or inducements of any kind have been made to me. No pressure or coercion has been used against me. I make the following choice (suspect initials on line next to appropriate statement):

- a. I do not want a lawyer. I am willing to answer questions or make a statement or both, about the offense(s) under investigation.
- b. I do not want a lawyer and I do not wish to make a statement or answer any questions.
- c. I want a lawyer. I will not make any statement or answer any questions until I talk to a lawyer.

3. I fully understand my rights and that my signature alone does not constitute an admission of guilt.

(Signature of Suspect)

(Signature of Witness/Interviewer)

PRIVACY ACT STATEMENT

ORITY: 10 U.S.C. 8013; 44 U.S.C. 3101; and EO 9397.

PRINCIPAL PURPOSES: Used to record information and details of criminal activity which may require investigative action by commanders, supervisory police, AFOSI special agents, etc. Used to provide information to the appropriate individuals within DOD organizations who ensure proper legal and administrative action is taken.

ROUTINE USES: Information may be disclosed to local, county, state and federal law enforcement or investigatory authorities for investigation of possible criminal prosecution or civil court action. Information extracted from this form may be used in other related criminal and/or civil proceeding records.

SECTION IV. STATEMENT

THIS PAGE USED FOR SIGNATURE ONLY. TEXT OF STATEMENT BEGINS ON PAGE 3

SECTION V. SIGNATURE/OATH

I hereby voluntarily and of my own free will make this statement without having been subjected to any coercion, unlawful influence, or unlawful duress. I swear (or affirm) I have read this statement, initialed all pages and corrections, and it is true and correct to the best of my knowledge.

(Signature of Person Making Statement)
(Signature of witness/interviewer)

scribed and sworn to before me, a person authorized by law to administer oaths, this 21st day of July 1994.

(Signature of Person Administering Oath)

SECTION VI. INSTRUCTIONS FOR CONTINUATION PAGE(S)

Use plain bond paper (both sides optional). At the top right of each page, print or type: "(Last Name of Individual making the Statement) on (Date)." At the bottom of each page, print or type: "Page of Pages". The individual must initial the top and bottom entries and sign his/her name at the bottom of each page.

I was asked to provide this statement, by Lt. Col. Joseph V. Rogan who advised me, he was assisting in an investigation at the behest of the Secretary of the Air Force, for the GAO, to look into facts concerning what has become to be known as "The Roswell Incident".

As I recall it was July 1947, I was then a Warrant Officer with seven years service. I was the only weather forecaster on duty in the Fort Worth base weather and flight service center. The base weather covered only the base the flight service center covered most of the southwest states. I received a call from some one in General Ramey's office who asked that I go to the General's office. I informed him that I was the only forecaster on duty and could not leave. Several minutes later General Ramey Himself called and said "get your ass over here If you don't have a car take the first one with a key".

I was met at the General's office by a Lt Col or Col who told me that some one had found a flying saucer in New Mexico and they had it in the General's Office. And that a flight had been set up to send it to Wright Patterson AFB OH., but the General suspected that it might be meteorological equipment or something of that nature and wanted it examined by qualified meteorological personnel.

The Col and I walked into the General's office where this supposed flying saucer was lying all over the floor. As soon as I saw it, I giggled and asked if that was the flying saucer. I was told it was.

Several people were in the room when I went in, among them, General Ramey, a couple of press people, a Major, I learned to be Major Marcel and some other folks. Someone introduced Major Marcel as the person who found this material.

I told them that this was a balloon and a RAWIN target. I believed this because I had seen many of these before. They were normally launched by a special crew and followed by a ground radar unit. They provided a higher altitude winds aloft. We did not use them at Fort Worth. However, I was familiar with them because we used them and their products on various projects in which I was involved. These were used mostly on special projects and overseas. The balloon was made out of a rubber type expandable material and when launched was about six to eight feet across. When the balloons got to altitude they expanded to twenty feet or more. The target was used for radar reflections and I believe each leg of the target was approximately 48 inches. It resembled a child's Jack (like a child's ball and jacks set) with a metallic material between the legs. The legs were made of material appearing to be like balsa wood kite sticks but much tougher.

While I was examining the debris, Major Marcel was picking up pieces of the target sticks and trying to convince me that some notations on the sticks were alien writings. There were figures on the sticks lavender or pink in color, appeared to be weather faded markings, with no rhyme or reason. He did not convince me these were alien writings.

I was convinced at the time that this was a balloon with a RAWIN target and remain convinced.

I remember hearing the General tell someone to cancel the flight the flight to Wright Patterson.

While in the office several pictures were taken of Major Marcel, General Ramey, myself and others.

I was dismissed and went to my office to resume my normal duties.

During the ensuing years I have been interviewed by many authors, I have been quoted and misquoted. The facts remain as indicated above. I was not influenced during the original interview, nor today, to provide anything but what I know to be true, that is, the material I saw in General Ramey's office was the remains of a balloon and a RAWIN target.

Appendix 4

Letter
LtCol Edward A. Doty to
Mr David Bushnell

3 March 1959

Mr. David Bushnell
MDNH
Air Force Missile Development Center
Holloman Air Force Base, New Mexico

Dear Mr. Bushnell:

It has taken me much too long in answering your inquiries of 9 October 1958 but I hope this information will be of some value to you in preparing a history of balloon operations at Holloman. Thanks also for the three reports which you sent me.

Answering your specific questions, my EDCMR to Holloman was 20 January 1948. I reported in about 1 February 1948. I immediately joined the Electronic and Atmospheric Projects Section and remained in this same basic organization through its various name changes for my entire tour at Holloman.

I attended the January 1950 Class at the Air Tactical School, Tryndall Air Force Base, Florida for sixteen (16) weeks and returned to Holloman by 15 May.

On 31 July 1950 I was assigned Chief, Geophysical Research Unit, (Balloon) Electronics and Atmospheric Branch, Technical Operations Section, O&P on Special Orders No. 152, par 24. This, I believe, was the first balloon organization. On 29 May 1951, S.O. No. 111, par 8 redesignated me without change of assignment as Chief, Balloon Atmospheric Unit, Electronics and Atmospheric Branch; Development and Test Section Base Directorate, Technical Operations. Then in S.O. No. 98, 13 November 1951, par 11, I was Chief, Balloon Sonde Sub-Unit, Electronics and Atmospheric Unit, Development and Test Section, Operations.

I was never the Holloman Base Weather Officer. Lt Colonel Maas was assigned as Base Weather Officer and as head of the E&A organization as a dual assignment for a while.

There was a continuity of organization from the earliest balloon activities up to the present. The name changed but the group continued. The radar research activities, the Aerobee rocket atmospheric investigations and the balloon activities were sponsored originally

by the Air Force Cambridge Research Center and were administered in a single organization up through the time I left Holloman.

When I first arrived at Holloman, a New York University group under Mr. C. B. Moore with a AF CRC contract had been launching 20 foot plastic balloons since June 1947 from the North area. I began as their project officer.

I hope this has been of some use to you.

Sincerely,

EDWARD A. DOTY
Lt Colonel, USAF

(H) C.S. : AF DRD - LR

Appendix 5

Letter
Brig Gen E. O'Donnell to
Commanding General USAAF
Subj: Change in Classification
of MOGUL
July 8, 1946

Ltr Watson Labs. 14 Jun 46, subj: "Change in Class. of 'Mogul,' Item 188-5."

1st Ind.

TSELT-2/WHD/mch

Hq., Air Materiel Command, Wright Field, Dayton, Ohio. 8 July 1946.

TO: Commanding General, Army Air Forces, Washington 25, D.C.

THRU: (AC/AS-4)

1. To amplify the information given in the basic letter it is desired by Electronic Subdivision that the following information and scientific data pertaining to project "Mogul" be classified "TOP SECRET:"

a. Precise data as to the exact placement of measuring instruments.

b. Scientific observations and measurements that have military application.

c. Detailed methods of measuring results.

2. Engineering preparations for the final test that are not in conflict with the above will be classified "Confidential."

3. Contractual documents will be classified the same as the security classification of the equipments involved. Equipments used in project "Mogul" are common to other systems or sets that are now classified "Confidential," "Restricted," or "Unclassified;" contractual documents should be classified accordingly.

4. Authorization is requested to observe the security classifications proposed herein.

FOR THE COMMANDING GENERAL:

E. O'DONNELL
Brig. Gen., U.S.A.
Deputy Chief
Engineering Division

Appendix 6

Long Range Sound Transmission
in the Atmosphere
by Maurice Ewing

LONG RANGE SOUND TRANSMISSION IN THE ATMOSPHERE

A Report for General Carl Spaatz

prepared by Maurice Ewing

I THE SOUND CHANNEL IN THE OCEAN

Under a contract with the Bureau of Ships, we have proved that there is a sound channel in the ocean with its axis at a depth of about 4000 feet. Confirming a prediction made by the writer, a four pound bomb fired at this depth has been heard at a distance of 2300 miles, using a hydrophone at the same depth as a receiver. This range enormously exceeds anything before achieved, and is possible primarily because the source and the receiver are placed at the most advantageous depth. The signal strength indicates that far greater ranges can be obtained without change of equipment.

At a typical place in the ocean, the speed of sound at the surface is 5001 ft/sec. It decreases to 4888 ft/sec at a depth of 4000 feet, and then increases to 5065 ft/sec at a depth of 16,200 feet. This situation is described as a sound channel with its axis at 4000 feet, because all sound rays are deflected downward at points above the axis and upward at points below it. Detailed calculation of the bending of the ray paths due to pressure and temperature shows that all rays leaving a sound source on the axis in directions within 12° of the horizontal are refracted back and forth across the axis and can travel unlimited distances without contact with surface or bottom, hence the long ranges. A similar calculation for a sound source near the surface shows that all rays must be reflected at surface and bottom many times in the course of a few hundred miles, hence the limited range of detection of ordinary shallow explosions, and the occurrence of skip distances.

The sound from an explosion at the axis of the sound channel has a duration of about 12 seconds per thousand miles of travel, and an unmistakable pattern of a gradual building up to maximum intensity with a very sharp cut-off. This last feature is of great importance because it permits accurate triangulation with a network of three listening stations, the rate of transmission being about one mile per second.

(Reference 1)

II EXISTENCE OF A SOUND CHANNEL IN THE ATMOSPHERE

In September, 1944, it occurred to me that there is a similar sound channel in the atmosphere with the axis at a height of about 45,000 feet, and that, with source and receiver placed at this height, we might exceed the accepted ranges as enormously as we had in the ocean. In other words, it might be possible to detect sound half way around the world.

The fundamental data on this subject as revealed during a hurried search of the literature (mostly prior to 1930), show that, for a typical large explosion, there is audibility from 0 to 25 miles and from 90 to 125 miles, with a zone of silence from 25 to 90 miles. The accepted explanation of the total collection of these data is that the speed of sound decreases from about 1090 ft/sec at the surface to about 970 ft/sec at about 45,000 feet, and then increases to about 1165 ft/sec at about 130,000 feet. (Reference 2)

Thus there is a sound channel in the atmosphere with its axis at a height of about 45,000 feet, and if both sound source and receiver are located at this height, we may expect extraordinary ranges and all the other useful phenomena which have been found in the sound channel in the ocean. This means that the signals will have highly characteristic identifying features and that they will permit accurate triangulation.

III PROBABLE MAXIMUM RANGE

The maximum range for sonic signalling in the atmospheric sound channel will depend primarily on the absorption coefficient, which is the rate at which the acoustical energy is converted into heat by frictional losses. Following Rayleigh (Reference 3, p. 316), it may be calculated that the distance at which sound of frequency 50 cycles per second would be reduced in intensity by the factor 7.5 by the effect of friction alone is about 24,000 miles at sea level, and about 4500 miles at 45,000 feet. As these distances are inversely proportional to the square of the frequency, they would be one hundred times greater for sounds of frequency 5 cycles per second, which have often been observed when large explosions were studied.

3.

It is impossible to make really detailed calculations of the maximum range without better information about temperature and sound velocity in locations from 45,000 to 90,000 feet, for it is there that the greatest frictional losses will occur. However, it is safe to predict that a bomb containing a few pounds of TNT can be heard from 4000 to 5000 miles. The chance that it could be heard to the farthest point on earth is worth consideration.

IV PROPOSED MILITARY USE OF ATMOSPHERIC SOUND CHANNEL

It is my belief that a large rocket or jet propulsion motor passing the axis of the sound channel would also be detectable by listening at several thousand miles, and subject to location by triangulation if heard by three suitably chosen stations. In time of war this triangulation could locate the launching sites of the enemy, and in peace time it is conceivable that suitably chosen listening stations could monitor the entire world to detect and locate any unusual rocket or jet propulsion experiments, thus minimizing the danger of surprise attacks with secret weapons.

V TYPES OF LISTENING STATION

The most promising types of listening station according to my present knowledge would make use either of the higher mountains of the world or of free balloons to gain adequate height. It is unknown at present by how far the receiver may be removed from the preferred height without prohibitive sacrifice of sound channel properties. However, in the submarine sound channel we have had fairly good reception with the hydrophone at 2000 feet when the axis of the channel was at 4000 feet. Hence, it is not beyond reason that the taller mountains might provide sufficient altitude of themselves.

Small stratosphere balloons provided with radio means for transmission of sound impulses to a receiving station either fixed or mobile, probably provide the most readily available listening arrangement.

VI PRELIMINARY INVESTIGATIONS RECOMMENDED

- a) Canvas published literature for such further information as can be gleaned from sound transmission between source and receiver at the earth's surface about variation of sound velocity and sound absorption with altitude. Also canvas meteorological literature for better information about the stratosphere.
- b) Assign an officer to search confidential publications on sound ranging and other related subjects for relevant information. This officer should also collect data on sound ranging equipment and personnel in the army which could be assembled for a preliminary test.
- c) Make a preliminary measurement using about three sound ranging units on ground as receivers, and bombs dropped or rockets fired upward from a high flying plane, or anti-aircraft shells sent as high as possible as sources. This will not be true sound channel transmission, but rather a refinement of the data collected from audibility of large explosions. By proper interpretation of records from bombs exploded at intervals of a few miles out to 400 or 500 miles, all of the basic information will be made available. By use of techniques which I have used for years on sound transmission through ground and through water, it is possible to calculate the path followed by each sound ray, to find its highest ascent into the stratosphere, and to determine the coefficient of sound absorption.
- d) A study of existing publications should be made to determine the sound production of typical rocket and jet propulsion units in order to have data about the intensity and the frequency distribution of these sources for ultimate estimates of sound channel range.

If these data do not exist, experiments should be made to produce them, for they would certainly be of use in other connections.

- e) An estimate of the background noise to be expected at the axis of the sound channel should be made. In my opinion, the principal contributors will be meteors, possibly high-flying normal air traffic, lightning, and anti-aircraft type artillery fire. A considerable body of information could be collected on this subject without experimentation.

My opinion is that the background noise will not be seriously high unless normal traffic begins to reach such heights that it will create the same type of disturbance as the projectiles which we are considering.

f) Measurements of actual sound channel transmission using a small stratosphere balloon carrying sound receivers and a radio for transmission of sound signals to a recording station should be the next step in this investigation.

VII CONCLUSIONS

It is my opinion that the stratosphere sound channel should be investigated, for it has the potentiality of military importance. I believe that its military importance depends greatly upon secrecy and that the investigation should be started in a quiet way, restricting knowledge of the purpose of the work to the smallest possible group.

VIII REFERENCES

1. Interim Report No. 1 Long Range Sound Transmission, by Maurice Ewing and J. L. Worzel, Contract N0bs-2083, Bureau of Ships, Navy Department, 1945.
2. Handbuch der Experimentalphysik, by C. Meissner, pp 211-251, XXV, 3 Teil Luftseismik, Wien & Harms, Leipzig, 1930.
3. Theory of Sound, by Lord Rayleigh, vol. II, pp. 316-17, Macmillan & Co., London, 1926.

Appendix 7

Report

Sonic Balloon Test Kwajaiein

HEADQUARTERS FITZWILLIAM FORWARD
c/o Commander, Task Group 7.2
APO 187, c/o Postmaster
San Francisco, Calif.

17 May 1948

SONIC BALLOON TEST, KWAJALEIN

Inclosure G to FITZWILLIAM FORWARD Report

The Watson Laboratories of Air Materiel Command arranged for one (1) of its sonic balloon teams to participate in the FITZWILLIAM project as a mobile team to operate in the Central Pacific, at KWAJALEIN, GUAM and HICKAM FIELD, HAWAII, in that order, changing location for each of the three (3) explosions.

The purpose of this exploratory test was as follows: first, to determine if an atomic explosion's compressional waves are generated in the sound channel existing between 50,000 and 70,000 feet (such waves would conceivably travel unimpeded for long distances in this channel without touching the earth's surface); second, to determine whether a sound pick-up unit suspended from a floating balloon could detect compressional waves (possibly undetected by similar sound units at the earth's surface) by virtue of the decreased background noise in the high-level sound channel.

Balloons were made of high grade plastic, were of tear-drop shape, and were twenty-five (25) feet at their largest sea-level diameter. The sonic unit was a combination microphone-transmitter which was suspended from the balloon and picked up sound waves, transmitting them to a ground directional antenna connected to a radiosonde receiver (standard SCR 658 air weather radio receiver). The transmitted sound impulses were recorded on two (2) Esterline-Angus recorders.

A dribble constructed of a five (5) gallon tin incorporating a metered jet to allow a predetermined spillage rate of high grade kerosene-ethylene-glycol mixture was attached to the balloon. This was designed to counteract the helium gas seepage thru the surface pores of the plastic balloon. This metered loss of ballast and controlled the rising rate of the balloon at 500 to 600 feet a minute.

Ground sonic equipment consisted of World War II sound ranging devices utilized to pick up sound waves from an explosion traveling along the earth's surface.

A radio receiver was used to obtain explosion time notification code signals from the ENIWETOK radio station.

The balloon launching site had to have a down-wind clearance of about 1000 feet to lay out the 100 feet risers and cables to which were attached the microphone-transmitter and dribbler units. Also the site had to be sheltered from the wind to prevent damage to the balloon while it was being

B-17 CREW

1st Lieutenant Owen B. Dubell	Pilot
1st Lieutenant Thomas F. Carroll	Co-Pilot
1st Lieutenant John Mertzen	Navigator
Sergeant W. R. Rice	Engineer

Time notification signals were required and provided in order to afford sufficient time to make necessary launching preparations, and to position the balloons just a few minutes prior to the predetermined arrival of the explosion sound wave. Headquarters FITZWILLIAM FORWARD furnished ARPACAS 3-1 and 3-2 by officer courier. The team experienced no difficulty in obtaining the time signals.

Reports required of the team were a brief statement as to positive or negative results of the tests, and notification of team movement to it's several locations. Reports of results were made to Headquarters FITZWILLIAM FORWARD and to AFMSW-1.

Results of the KWAJALEIN test were as follows: balloon-borne equipment results were positive and ground equipment results were questionable. An accurate final analysis and evaluation report will be submitted upon Dr. Crary's return to Watson Laboratories, including an accurate determination of results.

Due to time limitation and pending a thorough evaluation of results, the following recommendations, of necessity, should be considered tentative:

1. Before departing for field locations, a survey should be made to determine the best balloon launching sites, giving due consideration to shelter from high velocity and gusty winds, and sufficient clear space to lay-out shroud lines and control cables thus affording clear passage of the instruments which are suspended about one hundred (100) feet below the balloon.
2. That an SCR 658, radiosonde receiver be included in the team equipment list. For these tests, a receiver had to be borrowed from the air weather station at each location. This presented a problem because each station had only one (1) receiver and it was needed by the station personnel for upper air sounding operations. This necessitated selecting the best possible launching site adjacent to the weather station. Also, this precluded selection of a site without a weather station.

inflated. At KWAJALEIN a wind-break was constructed through the courtesy of the island commander, Captain Vest, USN. At a predetermined time, the balloon was inflated with a fixed amount of helium gas to raise it to an altitude of from 50,000 to 60,000 feet where it floated at a constant level. The balloon was cautiously launched and guided until it cleared all ground obstacles. Electrical power for the microphone-transmitter was provided through wet-cell batteries, especially constructed to prevent freezing. The balloon was tracked visually by use of theodolites. Prior to the actual test on KWAJALEIN on X-day (15 April 1948) two (2) practice runs were made to minimize chance of failure and to improve operating techniques.

The transportation requirement was for air lift to transport the team of six (6) scientists and twelve (12) thousand pounds of equipment from BELMAR, NEW JERSEY to KWAJALEIN, GUAM, HAWAII and then back to BELMAR, NEW JERSEY. The Air Materiel Command provided three (3) aircraft, a C-54, a B-29, and a B-17, and crews, under the direction of Captain Stanley C. Lewis, from the 4149th AFBU, MIDDLETOWN, PENNSYLVANIA. The C-54 was also utilized in carrying Tracerlab personnel and equipment to KWAJALEIN and GUAM. Maintenance assistance was afforded by the local base and tactical organizations.

The mobile team personnel was assembled and partially trained at Watson Laboratories. The team arrived at KWAJALEIN 31 March 1948; departed for MOTH FIELD, GUAM, on 16 April 1948; for HICKAM FIELD on 3 May 1948; and was scheduled to depart from HAWAII for its home station on Z plus one (1) day.

The balloon team and aircraft crew personnel were as follows:

BALLOON TEAM:

Dr. Albert P. Crary	"Q" clearance	Physicist
Mr. Charles S. Schneider	"Q" clearance	Meteorological Engineer
Mr. John W. Alden	"P" clearance	Radio Engineer
Mr. John A. Moulden	"P" clearance	Radio Repairman
Mr. Murry Hackman	"P" clearance	Meteorological Engineer
Mr. James Smith	"P" clearance	Meteorological Engineer

B-29 CREW

Captain Stanley C. Lewis	Pilot (Flight Commander)
1st Lieutenant Randall S. Kane	Co-Pilot
1st Lieutenant Wm. L. Adams	Navigator
M/Sergeant W. L. Halliday	Engineer
M/Sergeant R. A. Kabaste	Radio Operator
T/Sergeant R. A. Cox	Ass't Radio Operator
T/Sergeant L. D. Moon	Ass't Engineer

C-54 CREW

Captain John P. Clowry	Pilot
1st Lieutenant Richard Mesher	Co-Pilot
1st Lieutenant Chas. A. Lamana	Navigator
S/Sergeant James Brau	Engineer
S/Sergeant L. H. Campbell	Radio Operator
Sergeant George L. Fratwell	Ass't Engineer

Appendix 8

Memo

Brig Gen Tom C. Rives to
Maj Gen Curtis LeMay

Subj: Relief of Major Crane
as Project Officer for
MOGUL and TORRID

June 18, 1946

XXXXXXXXXXXX
MATERIEL

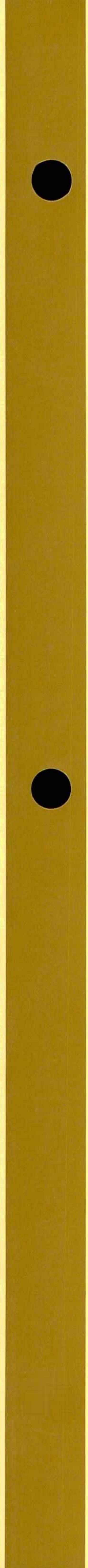
TSELT/TCR/gem

TSELT

18 June 1946

MEMORANDUM FOR: Major General Curtis LeMay

SUBJECT: Relief of Major R. T. Crane as Project Officer for
MOGUL and TORRID


1. In compliance with General Spaatz' directive, I contacted Dr. M. Ewing at Columbia University on 15 June 1946 and discussed the proposed relief of Major R. T. Crane as project officer on projects MOGUL and TORRID.

2. Dr. Ewing was exceedingly pleasant and agreed to the relief of Major Crane, asking only that it be done in such a way as to cause as little embarrassment to any of the parties concerned as possible. I advised him that the matter would be handled diplomatically.

3. I then discussed with Dr. Ewing the subject of a successor to Major Crane and suggested to him that Colonel Marcellus Duffy, a Regular Army officer and well-qualified on meteorological research and development work, might be made available for this duty. Dr. Ewing advised that he believed that he could work well with Colonel Duffy if he is assigned to this work. It was further agreed that as soon as a project officer is finally selected, a conference would be held with Dr. Ewing and the new project officer and Colonel Maier and Colonel Graul in order that there will be a clear understanding as to the objectives to be accomplished.

TOM C. RIVES
Brig. General, USA
Chief, Electronic Subdivision
Engineering Division

Noted by General Spaatz.

Memo

Maj Gen Curtis LeMay to
Maj Gen L.C. Craigie

April 16, 1946

16 April 1947

Major General L. C. Craigie
Chief, Engineering Division
Air Materiel Command
Wright Field, Dayton, Ohio

Dear Bill,

Attached is the action on your letter requesting deferment of foreign service for some of your people. I hope this solves your personnel problem for the time being. I am still waiting for the study on Wright Field people ordered to school this fall.

Sincerely,

CURTIS E. LEWIS
Major General, U. S. Army
Deputy Chief of Air Staff for
Research and Development

Incl.

Memo fr. A-1, 14 Apr 47

40023

Colonel Oscar C. Maier, O-16096

Retention: Indefinite. No known replacement in the AAF.

Duties: Chief, Electronic Plans Section, Electronic Subdivision. This officer should be retained in his present assignment due to the background of knowledge and experience which he has with reference to electronic research and development as well as meteorological research and development and the physics of the upper air. Colonel Maier has completed all requirements for a Ph. D. degree from the California Institute of Technology except for six months residency. During the period 1 February 1945 to 1 January 1946, Colonel Maier had been Commanding Officer of Watson Laboratories in charge of research and development of ground radar, radio and electronics equipment peculiar to the Army Air Forces, previous to which he was in command of various Signal Corps laboratories. Furthermore, he has complete technical knowledge and understanding of the projects being carried on by Watson Laboratories and Cambridge Field Station, which can only be achieved by years of active participation in the actual research and development of that particular type of electronic ground equipment.

Colonel Marcellus G. Duffy, O-18373

Retention: Indefinite. No known replacement in the AAF.

Duties: Assistant Chief, Electronic Plans Section, Electronic Subdivision. This officer has an extensive background and knowledge in meteorological and electronic research and development. He is a graduate of M.I.T. in meteorology. Colonel Duffy was liaison officer from the Commanding General, AAF, to the Chief Signal Officer for duty in connection with meteorological equipment for the period 1942-1946. During this period he set up AAF requirements, standards and training programs for weather equipment and personally followed this equipment from the laboratories to its introduction in all combat theaters. From September 1946 to January 1947, Colonel Duffy was in charge of applied propagation of compressional and magnetic waves at Watson Laboratories. At the present time, Colonel Duffy is monitoring the upper air research program for the AAF in addition to his duties as Assistant Chief of the Electronic Plans Section. With the Air Force competing against other services in the upper air research program, guided missiles and meteorological research, a competent, practical and theoretical officer is considered essential in the Plans Section, Electronic Subdivision.

Colonel Ralph L. Wassell, O-22329

Retention: Indefinite. No known replacement in the AAF.

Duties: Chief of Operations for Power Plant Laboratory. In this capacity he is responsible directly to the Laboratory Chief for the planning and execution of the entire engine development program. Specifically, he is responsible for supervision of the Rotating Engine Branch and the Non-Rotating Engine Branch. In order to successfully execute his responsibilities, Colonel Wassell must coordinate and approve the initiation of all research and development projects for

Appendix 10

New York University Constant Level Balloons Final Report

**RESEARCH DIVISION
COLLEGE OF ENGINEERING
NEW YORK UNIVERSITY**

Technical Report No. 93.03

**CONSTANT LEVEL BALLOONS
FINAL REPORT**

**Prepared for
AIR MATERIAL COMMAND
Watson Laboratories
Red Bank, N. J.
Contract No. W28-099-ac 241
Project No. 93**

Technical Report No. 93.03

CONSTANT LEVEL BALLOONS

FINAL REPORT

Constant Level Balloon Project
New York University

Prepared in Accordance with provisions of Contract
W28-099-ac-241, between
Watson Laboratories, Red Bank, New Jersey
and
New York University

The research reported in this document has been made possible
through support and sponsorship extended by the Geophysical
Research Directorate of the Cambridge Research Laboratories,
AMC, U. S. Air Force, under Contract No. W28-099-ac-241.
It is published for technical information only and does not
represent recommendations or conclusions of the sponsoring
agency.

WD Murray

Prepared by: William D. Murray, Project Director

Harold K. Work

Approved by: Harold K. Work,
Director of the Research Division

College of Engineering
New York University
1 March 1951
New York 53, New York

TABLE OF CONTENTS

	<u>Page Number</u>
A. Introduction and Statement of Problem.....	1
B. Constant Altitude Balloon Systems.....	3
C. Telemetering from Balloon Systems.....	7
D. Launching Services.....	13
E. Meteorological Analysis.....	19
F. Flights Utilizing the Constant Level Balloon System.....	21
High Altitude Balloon Trajectory Study (Contract AF 19(122)-45).....	21
High Neutron Intensity Study (Contract AF 28(099)-10).....	22
List of Flights.....	24
References.....	27

LIST OF ILLUSTRATIONS

<u>Figure Number</u>	<u>Page Number</u>
1. Pressure Displacement Switch for Ballast Control	4
2. Ballast Control Circuit	5
3. Constant Level Balloon Flight Using Ballast Control	6
4. FM-1 Transmitter	8
5. FM-2 Transmitter	8
6. AM-1 Transmitter	10
7. AM-2 Transmitter	12
8. Balloon Flight Using Fixed Ballast Flow	13
9. Balloon Flight Without Ballast	14
10. Flight Train, Service Flight	14
11. Inflation of a 20 ft. Plastic Balloon	15
12. Flight Termination Switch	17
13. Balloon Rip Assembly	18
14. Rip Assembly Cannon	19
15. "Two Level" Stepped Flight	23

ABSTRACT

Systems of constant altitude balloons have been designed, developed, tested and used in various types of atmospheric research. After investigation and testing of several methods, a system comprising of a plastic fixed-volume balloon, electrically operated control instrumentation, and liquid ballast was developed.

This system has been used on several series of flights for carrying instruments at constant altitudes, studying winds over long periods at the 200 mb level, and investigation of neutron maxima.

Balloon launchings were carried out at various sites in the United States by members of the project in coordination with representatives of the sponsoring agency. Meteorological analysis of conditions over selected stations in the Western Hemisphere as requested by the sponsor was carried out by members of the Department of Meteorology of New York University.

A. Introduction and Statement of Problem

Contract W-28-099-ac-241 between Watson Laboratories AMC was entered into on 1 November 1946 to be carried out from 30 September 1946 to 1 October 1948.

Services to be furnished were as follows:

Research, investigation and engineering services in connection with obtaining and furnishing experimental data on pressure and temperature in the upper atmosphere, to involve the following:

- a. The securing of constant level balloons under the following conditions:
 - (1) Initially a six to eight hour minimum time for the balloon in air; eventually a forty-eight hour time for balloon in air.
 - (2) The altitude to be attained by the balloon will be 10 to 20 km, adjustable at 2 km intervals.
 - (3) Maintain elevation within 500 meters and the frequency of oscillation to be such that it will not interfere with operation of balloon borne radio equipment.

- b. The construction by the contractor of an experimental air borne radio and associated air borne or ground receiving equipment which will transmit and receive information from a mechanical movement introduced into the radio circuit. The weight of the pick up device and any required power supply to be carried in the balloon will not be over 2 lbs.
- c. The contractor will fly the balloons, track them, and collect the data on pressure and temperature to be transmitted as the balloon goes up and at periodic intervals at flight altitude. These intervals to be determined by consultation. The accuracy is to be comparable to that of the standard Army Radiosonde.
- d. Interpretation of Meteorological data in connection with project.

Five copies of reports of design and development phases were to be delivered at monthly intervals. Results of meteorological studies were to be transmitted as completed to the sponsoring agency for use of Air Force scientific personnel.

On 27 February 1948, Modification #1 revised the number of copies of reports to be furnished to 25. Modification #2, of 2 April 1948, added the requirement of "Research Investigation, and Engineering services leading to the determination of the dependance of the propagation of sound on atmospheric conditions", to the contract. Contract funds were increased to cover this additional requirement.

Under Modification #3 of 23 April 1948, it was agreed that a separate final report on telemetering from Balloon Systems would be completed and transmitted to the sponsor. The time of performance was extended to 1 February 1949 and contract funds increased to cover the increased period of performance by Modification #4 to the contract on 29 September 1948.

On 28 October, 1948, the number of reports required was increased to fifty (50) and the place for final inspection and acceptance charged to Cambridge Field Station, AMC by Modification #5. Modification #6 changed the allotment for funds to be used on the project. The period of performance of the project was extended to 30 March 1949, by Modification #7 of 26 January 1949.

Modification #8 of 8 April 1949, modified the requirement to that of maintenance of one trained person in the field to carry out balloon launching and tracking services in conjunction with Air Force scientific personnel. Funds were increased to extend the

period of performance to 15 March 1950. A final report on development and testing of constant altitude balloon systems was to be submitted to the Air Force. Modification #9 revised the delivery address for reports.

Modification #10 of 1 May 1950, increased contract funds to continue field service and meteorological analysis work to 15 June 1950.

Modification #11 subsequently extended the period of performance to the termination date of 31 December 1950 and increased funds accordingly.

B. Constant Altitude Balloon Systems

Development of a system to maintain balloons at constant altitudes for long periods of time was completed on 15 March 1949. This development has been completely reported in "Technical Report 93.02"(1) by this Research Division under "Section 1, General".

Essentially the system as developed at New York University consists of a constant volume balloon of thin polyethylene which, when filled with hydrogen or helium, furnishes the lift for the system. (Because of the increased safety to personnel and equipment, use of helium is to be recommended). The balloon is inflated with enough gas to balance the weight of the suspended equipment, plus a certain amount of "free lift" which will cause the system to ascend. When the balloon nears floating altitude and becomes full, the gas comprising the "free lift" will be expelled through an open appendix at the bottom of the balloon. The system is then at equilibrium at an altitude fixed by the balloon volume. The ratio of molecular weights of the lifting gas and air, density of the surrounding air, and the total balloon load are as follows:

$$V_b \left(1 - \frac{M_g}{M_a}\right) d_a = L$$

This state of equilibrium is broken, however, by changes in any of the above variables. Basically, losses of lift due to leakage and diffusion of gas, and changes of temperature of the lifting gas cause a change from equilibrium conditions.

Any variations causing an increase in altitude will result merely in a valving of gas from the fixed volume balloon and a slight increase in altitude. Changes in the reverse direction, however,

must be compensated for by decreasing the load on the system to prevent descent to the ground.

This decrease of load is carried out by dropping liquid ballast as demanded by a pressure activated ballast control switch. This switch completes a circuit through a relay operated ballast valve whenever the balloon system descends to a region of pressure greater than that of its selected floating altitude. Ballast is thus dropped and the system returned to floating altitude.

On flights made on another project since the termination of the development phase of this project, the ballast control system was standardized to include a pressure displacement switch and an electrically operated ballast valve. The displacement switch (Fig. 1) consists of a standard temperature compensated aneroid cell and pen arm from a radiosonde modulator

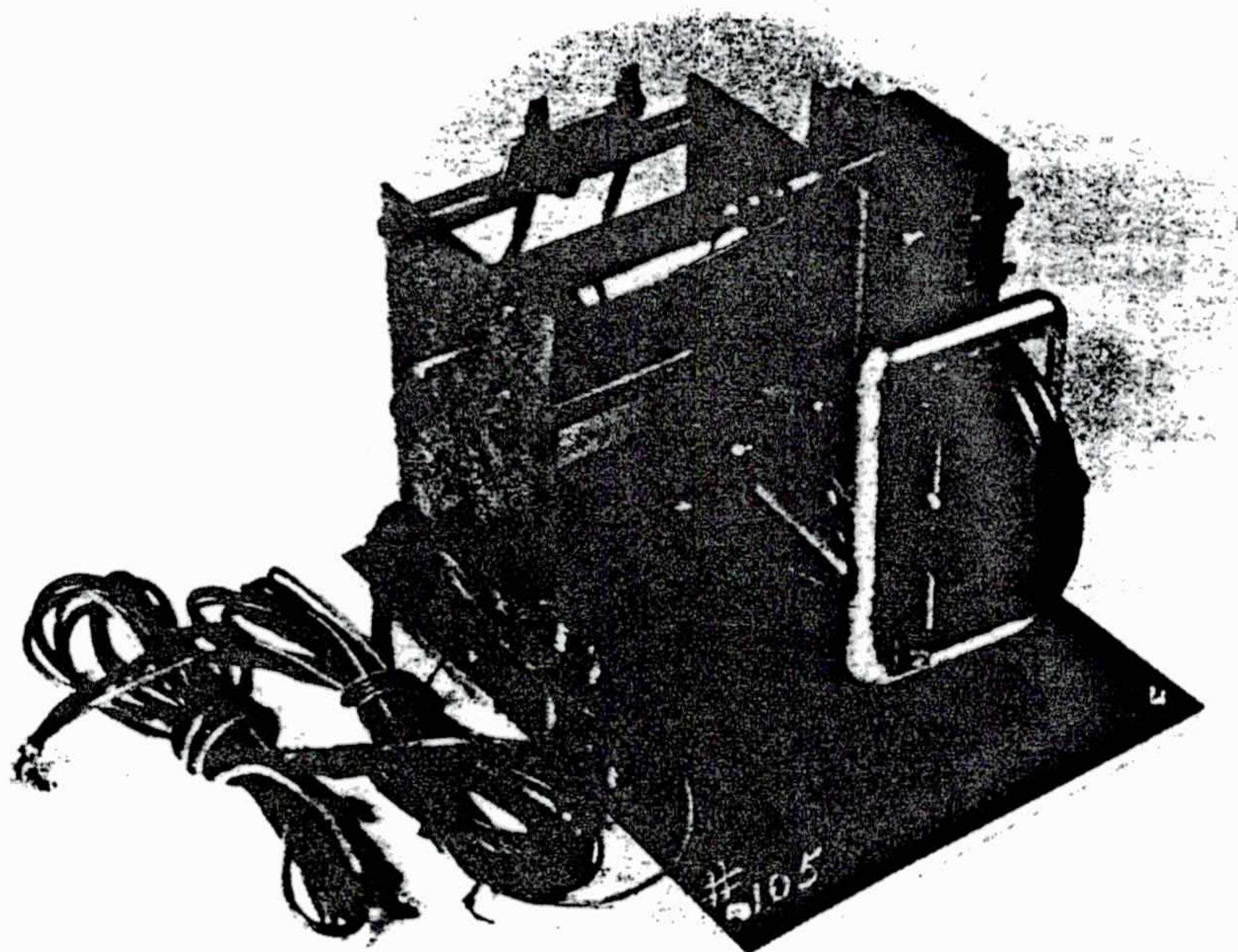


Fig. 1
Pressure Displacement Switch for Ballast Control

(Type E preferred); a rotating commutator of two segments, an insulator and a conductor; a six volt 1 rpm motor; and a shelf for the pen arm. In calibration, the aneroid cell is moved across the base by means of a screw which allows selection of various altitudes for control.

Initially the pen arm rides on the shelf during ascent so that the circuit to the valve remains open until the balloon approaches floating altitude. Several thousand feet before ascent is completed the pen arm falls off the shelf closing the ballast circuit (Fig. 2) and causing ballast flow during the final period of ascent. When the balloon reaches control

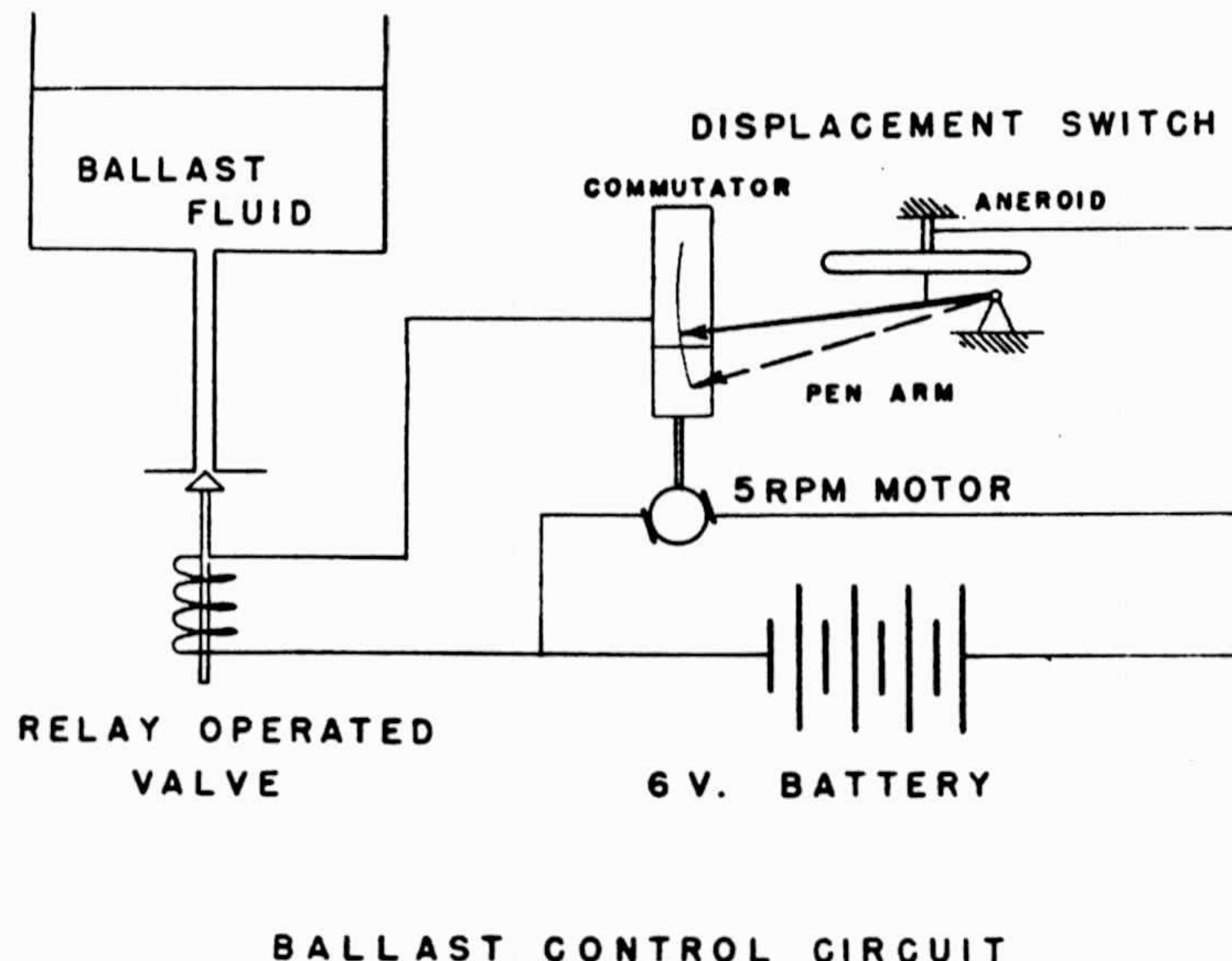


Fig. 2
Ballast Control Circuit

altitude the pen passes to the insulator portion of the commutator and ballast flow ceases. Whenever the balloon system subsequently descends past control altitude, ballast is made to flow, maintaining the balloon altitude at control level. This system has been used successfully on over twenty constant level flights maintaining altitude to close limits for periods up to 60 hours. An example of a flight made with this control is shown as Fig. 3.

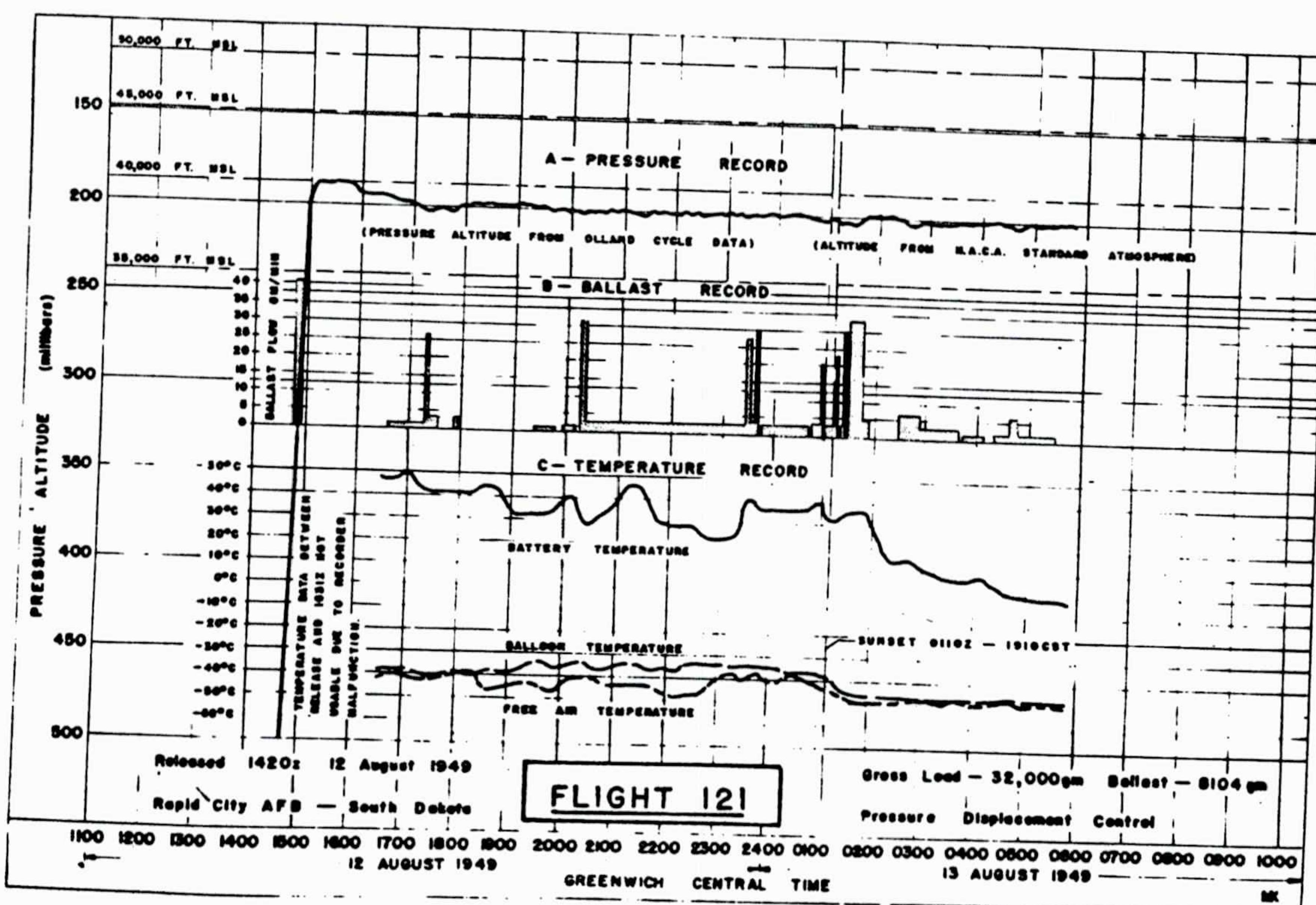


Fig. 3
Constant Level Balloon Flight Using Ballast Control

A review of this system by members of the University staff has been published in "Transactions of the American Geophysical Union"(2). Earlier work on this development has been reported by members of this Research Division in "Technical Report 93.01"(3) and in the "Journal of the American Meteorological Society"(4).

A manual for those interested in making use of balloon systems of this type has also been published as "Section II, Operations" of our "Technical Report 93.02"(1). This report consists of a discussion of instrumentation for balloon systems, techniques for launching and tracking, and telemetering from balloons as developed and tested at New York University.

C. Telemetering From Balloon Systems

The second requirement of this project was the investigation, development, and testing of balloon borne telemetering systems. The development was completed in June of 1948 and a final report(7) of work accomplished and recommendations made to the sponsor at that time.

Two types of transmitter units were suggested as a means of accomplishing the telemetering of data from a balloon to ground station receivers. A high frequency system, making use of line-of-sight transmission allows for accurate positioning of the balloon system from two ground stations. The line-of-sight characteristic, however, limits the range of this type transmitter, and ranges in excess of 250 miles are not to be expected with a balloon system floating at 40,000 ft.

Three line of sight transmitters were designed for use in balloon work. The first, the FM-1, was designed to operate at 72 mc, using a conventional reactance tube modulator. Several stages were included to deliver 1 watt output at the design frequency. The unit was quite complicated and the required input power large due to the requirement for several stages to transmit at the high frequency. Fig. 4 is a schematic of the FM-1 transmitter.

In order to overcome this limitation of FM sets, a two tube transmitter was developed (Fig. 5). Variation in vacuum tube resistance is used to modulate the oscillator plate voltage of a self-excited oscillator in accordance with the audio signal. This provides the frequency modulation desired. In order to maintain a stable center frequency and render the oscillator insensitive to changes in supply voltage, a neon tube voltage regulator was included.

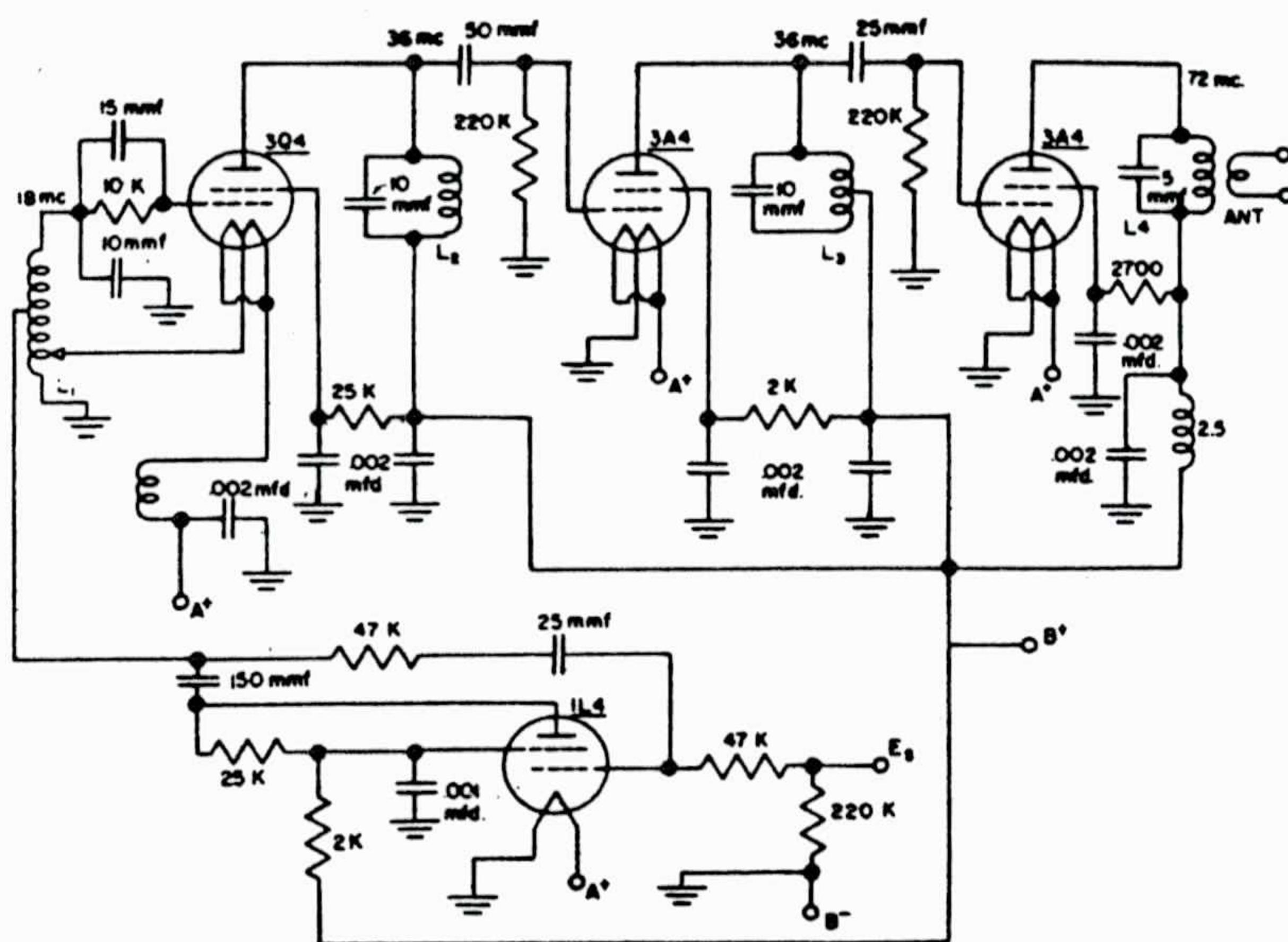


Fig. 4
FM-1 Transmitter

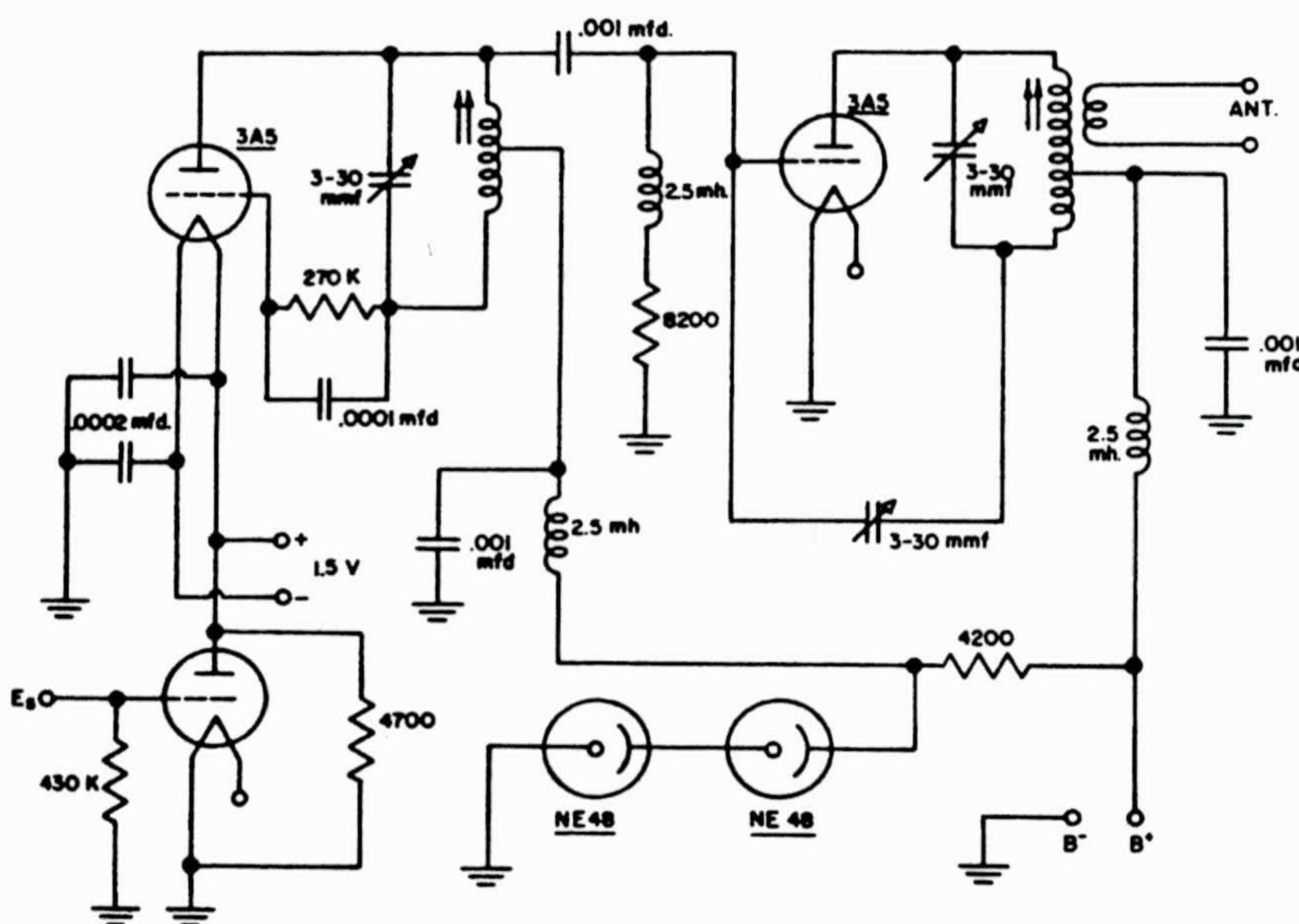


Fig. 5
FM-2 Transmitter

Output of the oscillator is both amplitude and frequency modulated, the amplitude modulation being limited by a class "C" RF amplifier. This unit weighed six ounces, was fed by a plate voltage of 270 volts with a filament drain of 400ma. at 1.5 volts. The output was one watt at frequencies from 25 to 100mc.

Before procurement of a receiver with automatic frequency control an attempt was made to develop a crystal controlled oscillator to overcome the frequency drift inherent in FM systems. This work was abandoned when the controlled receiver was obtained. The crystal control unit which was developed required extreme care in tuning in order that modulation be linear.

A miniature power amplifier, using one dual triode as a push-pull amplifier was constructed for use at 25 to 100mc with any of the above mentioned transmitters. The antennae for these transmitters was a half-wave vertical dipole.

The receiver found satisfactory for these systems was the R-2A/ARR-3 Sonobuoy receiver. This unit employs Automatic frequency control and will tolerate a drift \pm .35mc before retuning is required.

When SCR-658 radio direction finding equipment became available work on these transmitters was abandoned and a 400mc transmitter used. This system allows for accurate positioning of the balloon systems by use of crossed azimuths from several receiving stations.

A transmitter using pulse time modulation was designed for use with this receiving equipment. The advantages here are high peak power with relatively low input power (and thus a high signal to noise ratio) and simultaneous transmission of several data channels at one frequency. This project was abandoned before tests could be completed due to a modification of project requirements, but preliminary results indicated that this system would be advantageous in AM or FM transmission. This system makes use of short duration pulses (.5 micro second) at a repetition rate of approximately 10 kc.

For long range transmission of information an amplitude-modulated transmitter was developed. (Fig. 6) This unit, the AM-1, is crystal controlled, employing a 3A4 miniature tube in a Pierce oscillator circuit as the crystal oscillator. This circuit does not require an LC tank circuit and eliminates the tuning of this additional stage. The RF amplifier is a 3A5 miniature dual triode tube. The unit was designed to give 1.5 watt output with a 270 volt plate supply and can be used with 380 volts to give 3 watt output.

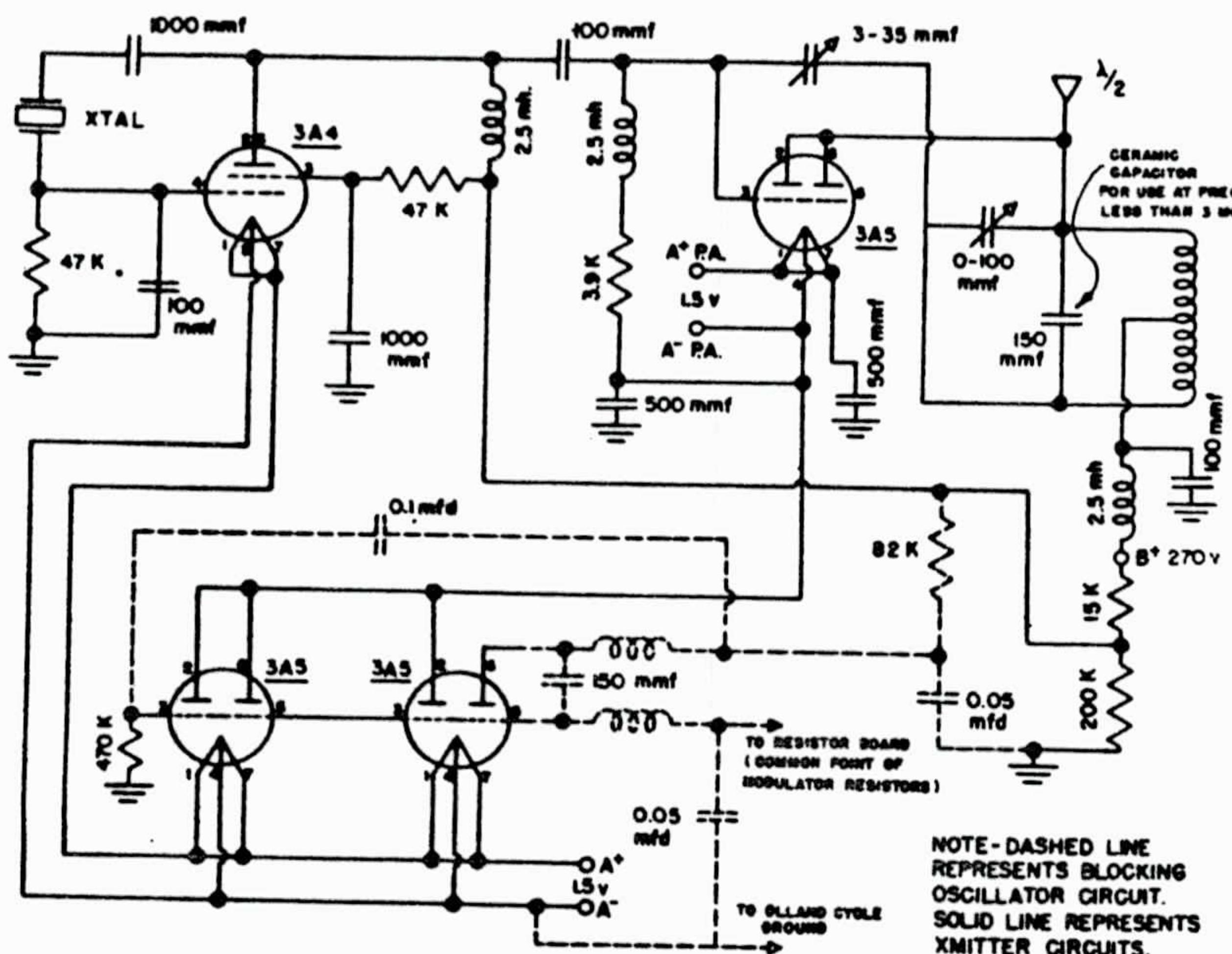


Fig. 6
AM-1 Transmitter

Frequency ranges from 1.5 to 9mc can be employed with the AM-1. The modulation of the AM-1 is effected by use of a triode modulator (2-3A5) tubes) connected in series with the plate supply of a class "C" RF amplifier. Variation of the plate supply voltage of the RF amplifier caused by change in tube resistance gives amplitude modulation linear with plate voltage of the amplifier. By use of this system modulation from DC to several hundred cycles is obtained.

The receiver for this transmitter was a Hammerlund SP 400X with several modifications. In order to increase the signal to noise ratio a crystal filter was introduced into the IF amplifier circuit to narrow the bandwidth. Bandwidth was also reduced by

decreasing the coefficient of coupling between the primary and secondary of the IF transformers. By this reduction of bandwidth to 3kc a 3 microvolt signal produced a 15.5 DB signal to noise ratio, where at 16 kc bandwidth only 7 DB was obtained.

In order to obtain accurate reproduction of the amplitude of the audio frequency the AVC circuit was modified by adding a fixed bias to the AVC diode of the receiver. This flattened the characteristic of the AVC circuit and no change in amplitude of recorded audio signal was detected over a six hour flight using a constant amplitude audio signal from the transmitter. The signal was tapped off at the output of the second detector of the receiver and fed to a Brush BL 905 AC amplifier for recording. The recorder used was a Brush BL-202 double channel oscillograph. A quarter wave vertical receiving antennae was employed with a counter poise ground. The transmitting antennae was a vertical half wave dipole.

In order to use the AM-1 for transmission of information from pressure and temperature sensors a relaxation oscillator circuit was incorporated in the system. (dotted section - Fig. 6). This oscillator used one half of one of the 3A5 modulator tubes and produced a blocking rate approximately proportional to resistance of the sensor instruments. This information could be superimposed on the regular modulated signal and two types of information could be transmitted simultaneously; one as an amplitude and frequency change of the basic signal, the other as a frequency of pulses superimposed on the basic signal.

The AM-1 has been used in balloon control research to transmit information on pressure, temperature and ballast requirements. It was also employed to give information on Neutron intensities in another Air Force project(5). In order to obtain information on balloon position on a wind study project the AM-1 was used as a beacon to be "homed in" on by the radio compass of aircraft(6).

A system of diversity reception was considered for use with a dual channel AM-1 transmitter in order to increase reliability despite atmospheric noise. In the dual channel unit a common modulator was connected to two separate crystal oscillators and RF amplifiers. In preliminary tests two receiver and recording units were used.

For short range balloon flights the AM-1 was modified for use with subminiature and acorn type tubes. In this, the AM-2, two 2E27 tubes in parallel provide excitation for the type 958A RF amplifier. A circuit diagram of this unit is shown as Fig. 7.

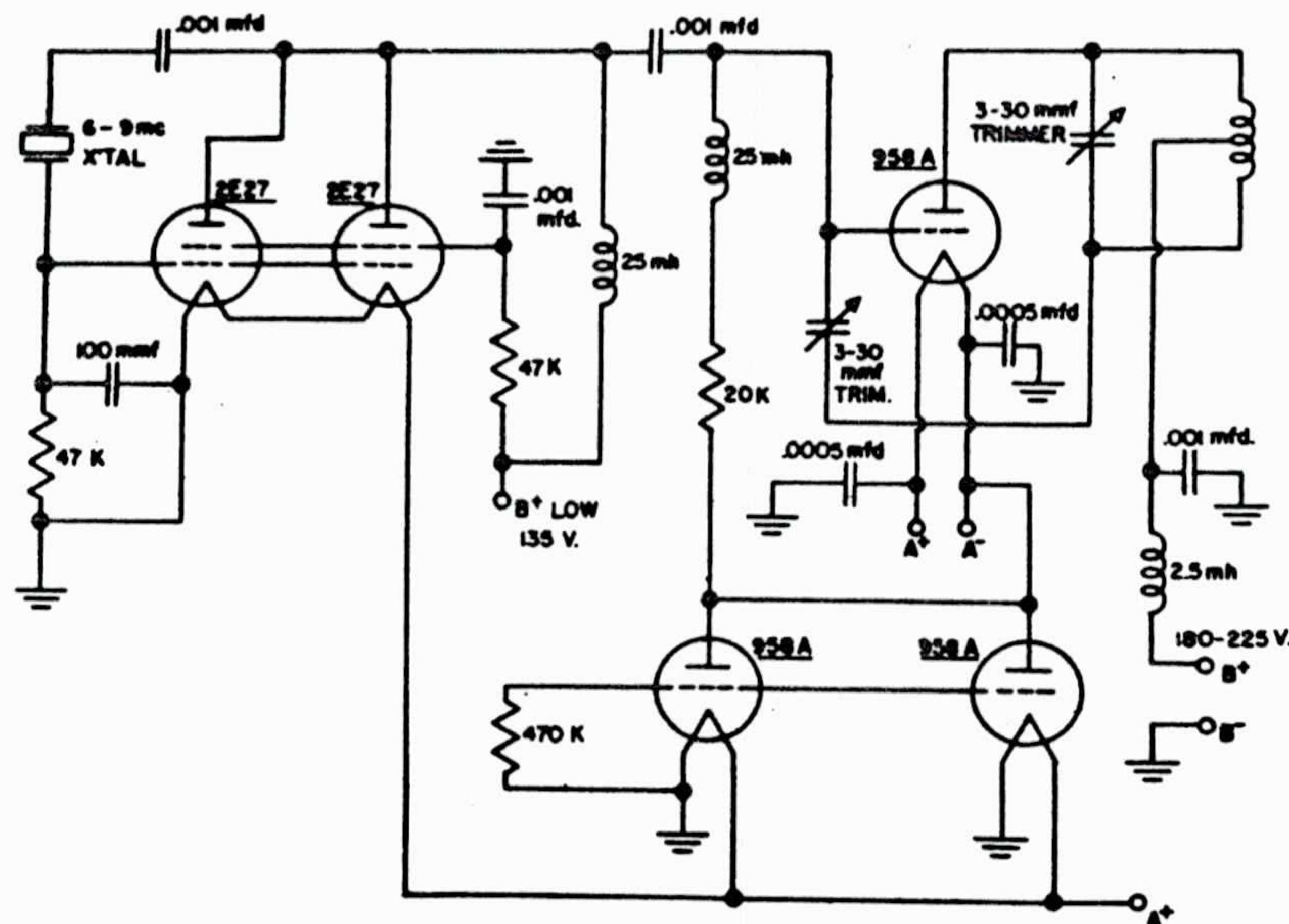


Fig. 7
AM-2 Transmitter

In addition to radio direction finding with the SCR658 and beacon transmission with radio compass, several other methods of balloon positioning were evaluated. Radar positioning was successful only if a target was attached to the balloon train. Generally, the ranges possible with radar are not as great as those possible by radio direction finding. For direction finding on the low frequency AM transmitter some value was found in use of loop antennae. Accuracy of this method is between .5 and 2 degrees and is generally hindered by sky wave reflection.

A pulse time modulated transponder beacon at high frequencies was found to be advantageous for obtaining accurate slant range to the balloon. Preliminary investigation of use of Doppler effect for positioning indicated that this method is not feasible due to difficulty in measuring the low frequency differences involved.

D. Launching Services

During the course of the project balloon flights were split into two general classifications, (a) research and (b) service.

Research flights were made to test balloon controls and telemetering systems developed under the contract. A full report of these research flights has been made in "Technical Report 93.02 (1), Section III, Summary of Flights"

Service flights were carried out by New York University personnel in conjunction with technical personnel from the sponsoring agency to test geophysical equipment developed in Air Force laboratories. The requirements for these flights were launching and tracking of balloons to float at specified altitudes for short periods of time (6 to 8 hours). Because of this short flight duration, simplified plastic balloon systems were used. Balloons were maintained aloft by use of constant fixed ballast flow, or ballast was excluded entirely from the system. A typical flight using constant ballast flow at a rate slightly exceeding leakage losses is shown as Fig. 8.

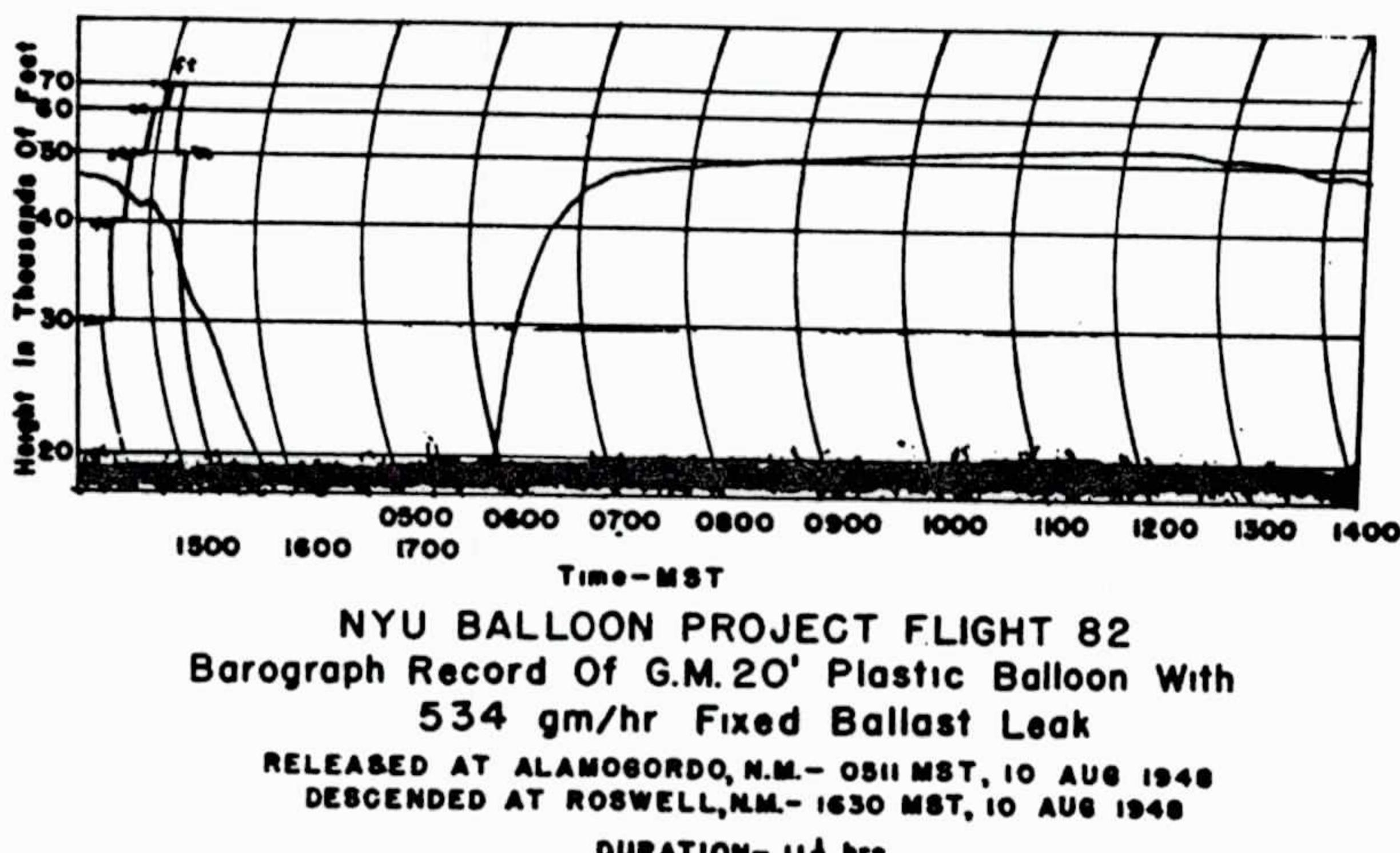
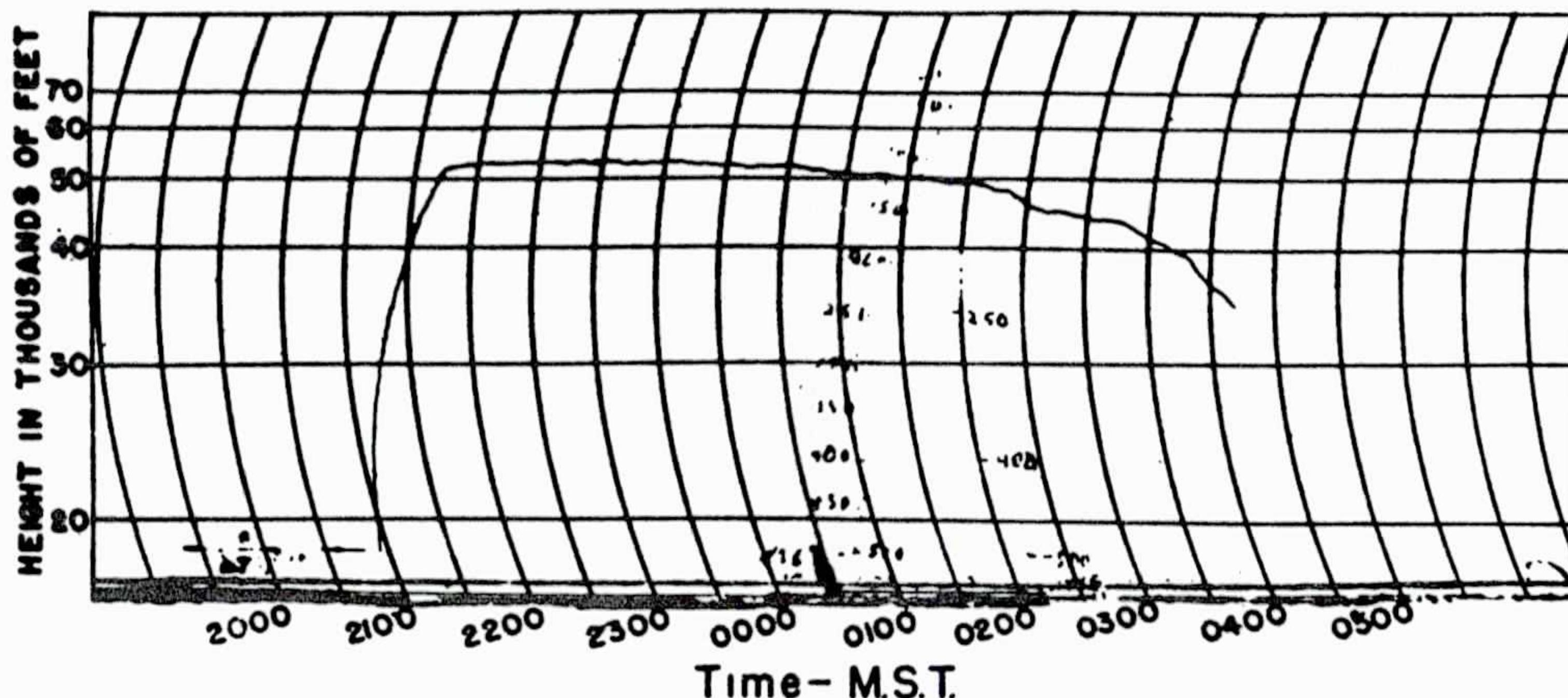



Fig. 8
 Balloon Flight Using Fixed Ballast Flow

Fig. 9 is a typical flight with no ballast. The flight train for these flights is shown as Fig. 10.

NYU BALLOON PROJECT FLIGHT 71
 Barograph Record Of GM 20 Ft. Plastic Balloon Showing
 Balloon Performance When No Ballast Was Dropped
 RELEASED AT ALAMOGORDO N.M., 2042 MST - 9 JULY, 1948
 RECOVERED AT VALENTINE TEXAS, 10 JULY, 1948
 ESTIMATED DURATION 10 HOURS

Fig. 9
 Balloon Flight Without Ballast

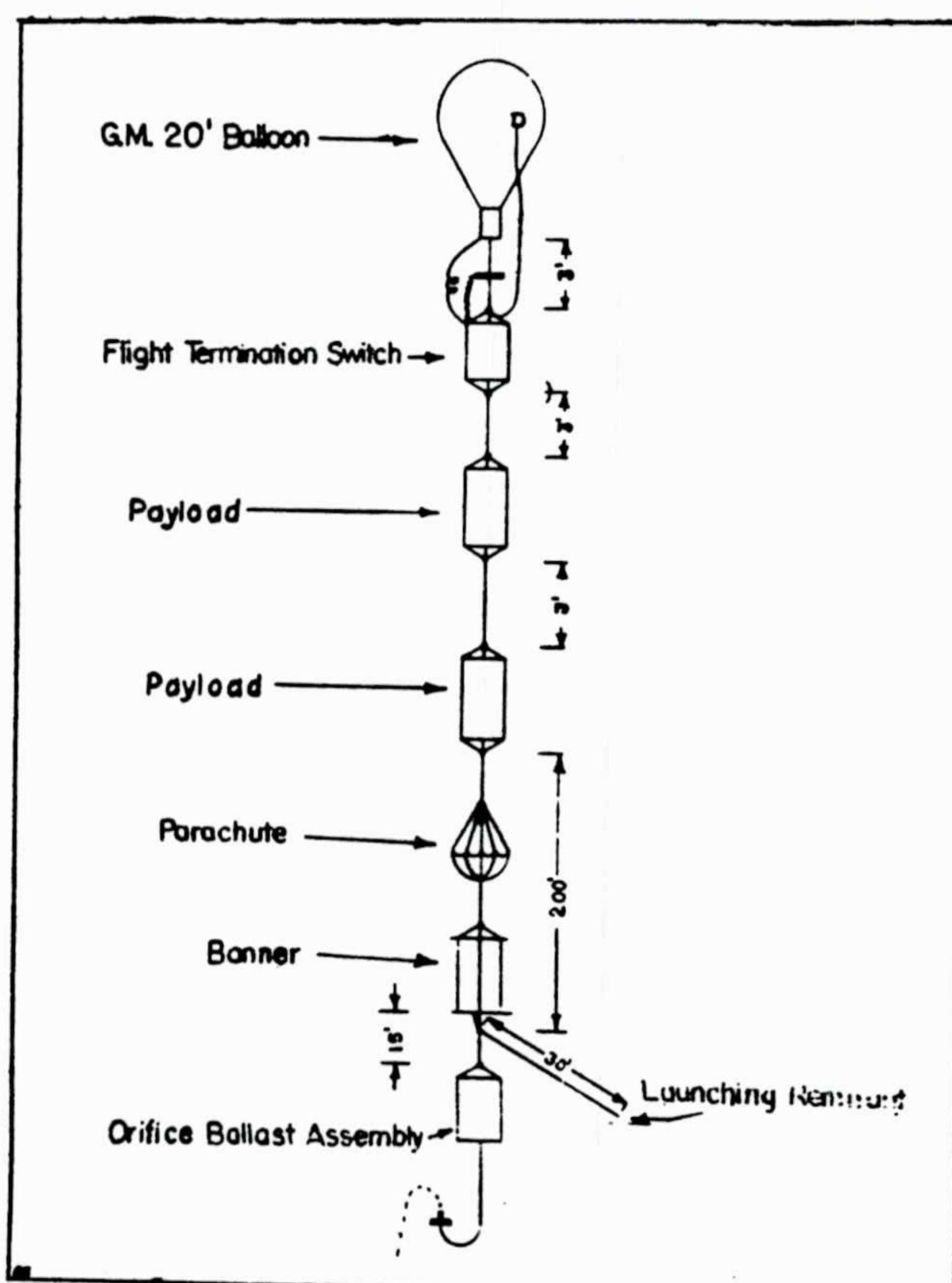


Fig. 10
 Flight Train, Service Flight

With light weight payloads, balloon systems of this type can be launched by two or three experienced balloon men. The launching is carried out in a manner similar to that explained in Section II, Operations, of "Technical Report 93.02(1)", in that the balloon is inflated in the lee side of a building or wind screen, (or in an aircraft hangar if one is available, or in the open when winds are light) with the equipment train laid out downwind of the balloon. The amount of gas lift is equal to balloon weight plus approximately 10% to cause ascent at 800 to 1000 ft. min. A picture of inflation of a 20 ft. diameter plastic balloon is shown as Fig. 11.

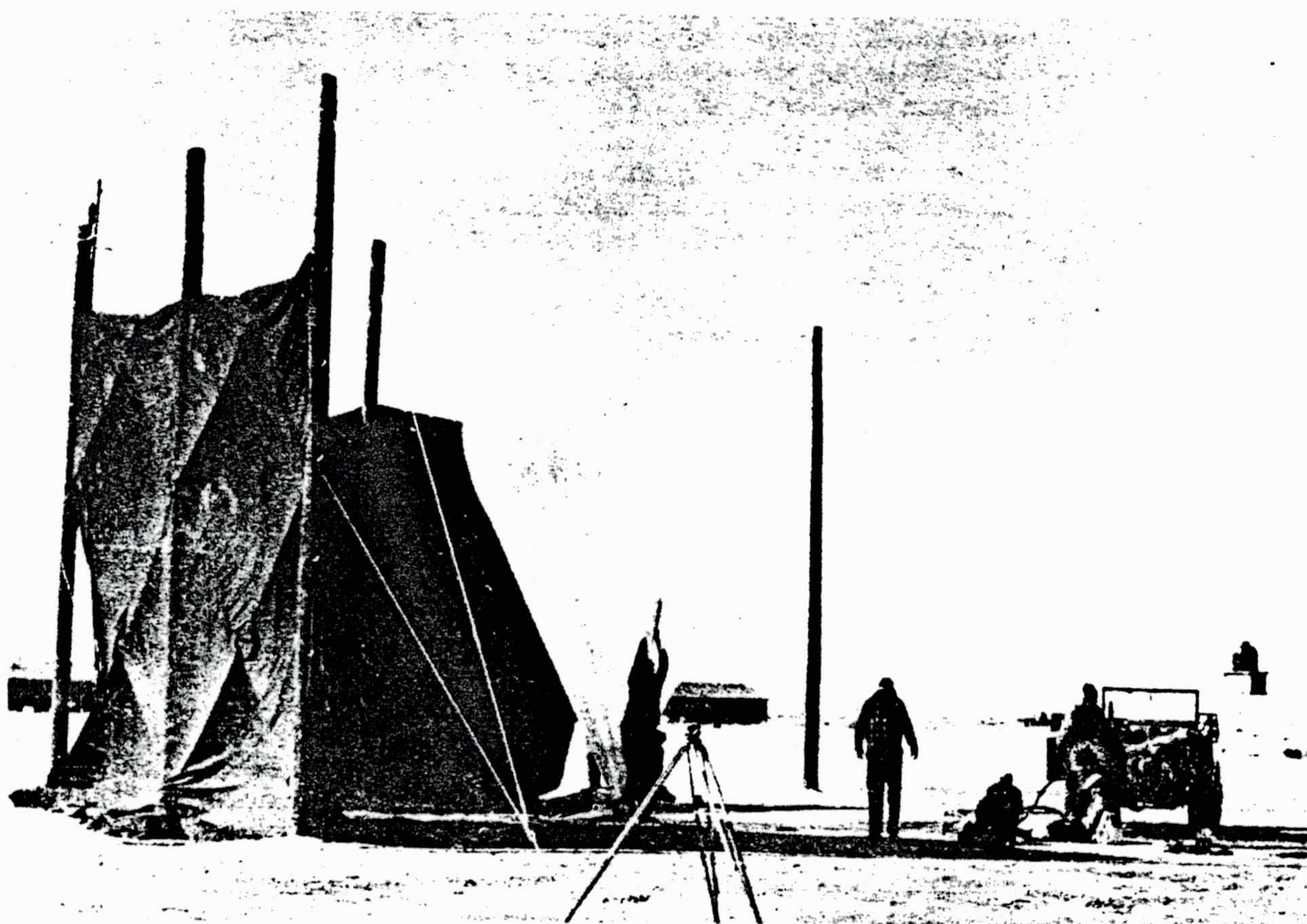


Fig. 11
Inflation of a 20 ft. Plastic Balloon

The following is a list of equipment needed for launching of a single flight of this type:

(a) Launching Equipment:

- 1 ea. set instructions (Operations Manual)
- 2 ea. elliptical shot bags (each filled with 100# of shot)
- 1 ea. 40' x 6' Ground Cloth
- 4 ea. sheets polyethylene, .001" to .004", 4' x 4'
- 1 ea. gas tank manifold with pressure gages and valve
- 1 ea. rubber hose, 1" I.D., 10' long with diffuser
- 1 ea. rubber tubing 1/2" bore, 1/8" wall, 8' long
- 1 ea. solution balance
- 1 ea. inflation nozzle, ML-196 for rubber balloons

- 1 ea. tool kit complete with 2 sheath knives, 50' cloth measuring tape, brass wire, 1" Mystic tape, volt ohmmeter, pliers, screwdrivers, inflation tools, flashlights, crescent wrenches, soldering iron, compass, 2 open-end wrenches, 1-1/8" x 1-1/4" openings, 14" pipe wrench, spanner for helium tank valves, etc.

- 1 ea. theodolite ML-247 with tripod ML-78 (optional)
- 1 ea. recorder, brush oscillograph or other with amplifier.
- 1 ea. SCR-658 radio direction finder
- 1 ea. chronometer

(b) Flight Equipment:

- 2 to 5 tanks helium
- 1 ea. balloon
- 2 ea. rolls acetate fiber scotch tape
- 1 ea. appendix stiffeners (if appendix is to be used)
- 500# test nylon line
- 75# test linen twine
- 2 ea. 350 gram balloon ML-131A (for wind sock)
- 5 to 10 toggles or hooks
- 1 ea. radio transmitter
- 1 ea. pressure sensor (and temperature if desired)
- Payload instrumentation
- 1 ea. banner, 3' x 6'
- Data sheets
- Weight sheets
- Reward tags (English, Spanish or other language)

(c) Termination Equipment

- 1 ea. flight termination switch
- 1 ea. set rip rigging
- 2 ea. cannons
- 2 ea. squibs (treated for high altitude)

(d) Fixed Rate Ballast Equipment:(optional)

1 ea. orifice spinnerette, to give proper ballast flow
1 gallon ballast, compass fluid AN-C-116
1 ea. ballast reservoir (1 gallon capacity)
1 ea. filter 3' diameter, 325 x 325, phosphor bronze mesh
6 inches tubing (Tygon) 3/16" bore

Tracking of these flights was maintained by use of an SCR 658 radio receiver with a 400mc transmitter telemetering information from the balloon system. Information received through the telemetering circuit can be recorded on a standard weather station recorder, a recording oscilloscope of the Brush Development type or by any other convenient means.

Altitude of the service flights was determined by use of a modified radiosonde modulator, an olland cycle modulator (see p.68 , Section I, General, Technical Report 93.02(1)), or by computation from knowledge of the weight of the balloon system and volume of the balloon.

In order to keep balloon systems from floating in the air lanes, a flight termination switch was included in the circuit. This switch is a radiosonde modulator modified so that all contacts above 25,000 ft. are disconnected from the circuit. The pen arm rides on a shelf during ascent to about 30,000 ft. and then falls to the commutator (See Fig. 12).

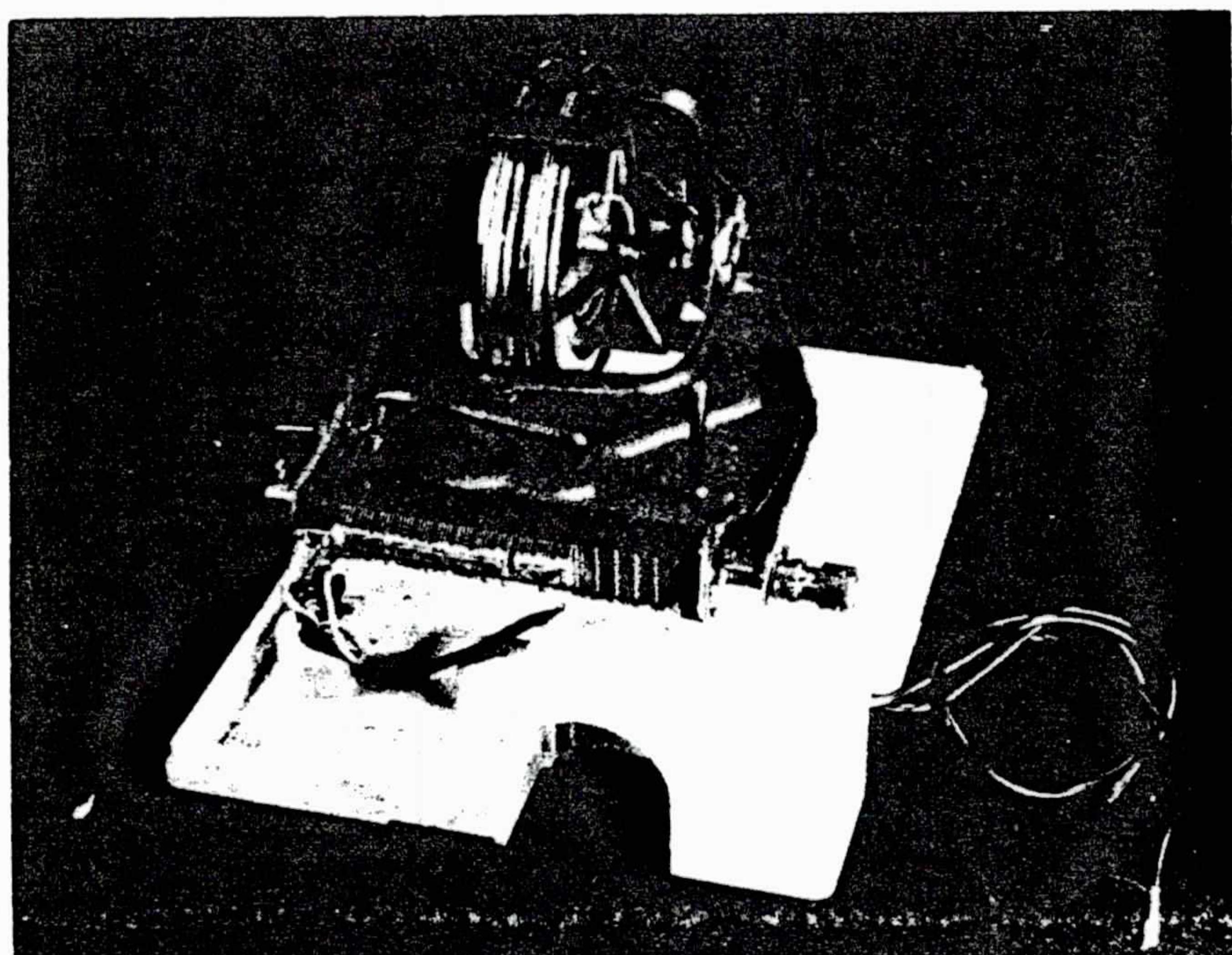


Fig. 12
Flight Termination Switch

When the system again descends to 25,000, the pen arm comes into contact with the commutator contact and an electrical circuit is closed through a squib in the load line. The load line is cut and the load on the system falls six to eight feet before being caught by a supplementary load line. During this fall a rip line pulls a hole one foot long in the side of the balloon and the system descends using the partially inflated balloon to hold the rate of descent to approximately 1200 ft/minute. This system has been used successfully in over 100 flights.

A drawing of the rip assembly is shown as Fig. 13. The cannon and squib to cut the load line are shown as Fig. 14.

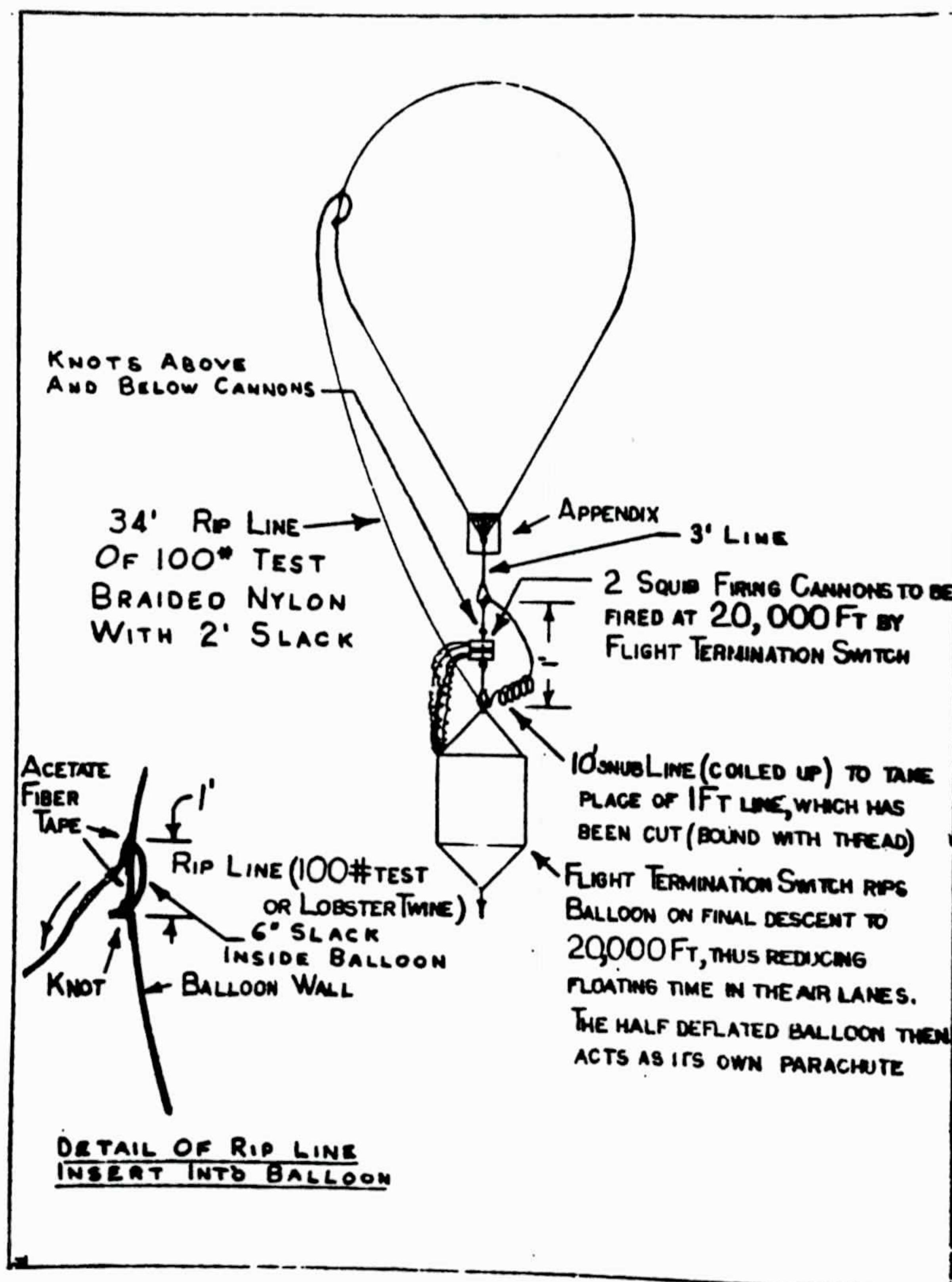


Fig. 13
Balloon Rip Assembly

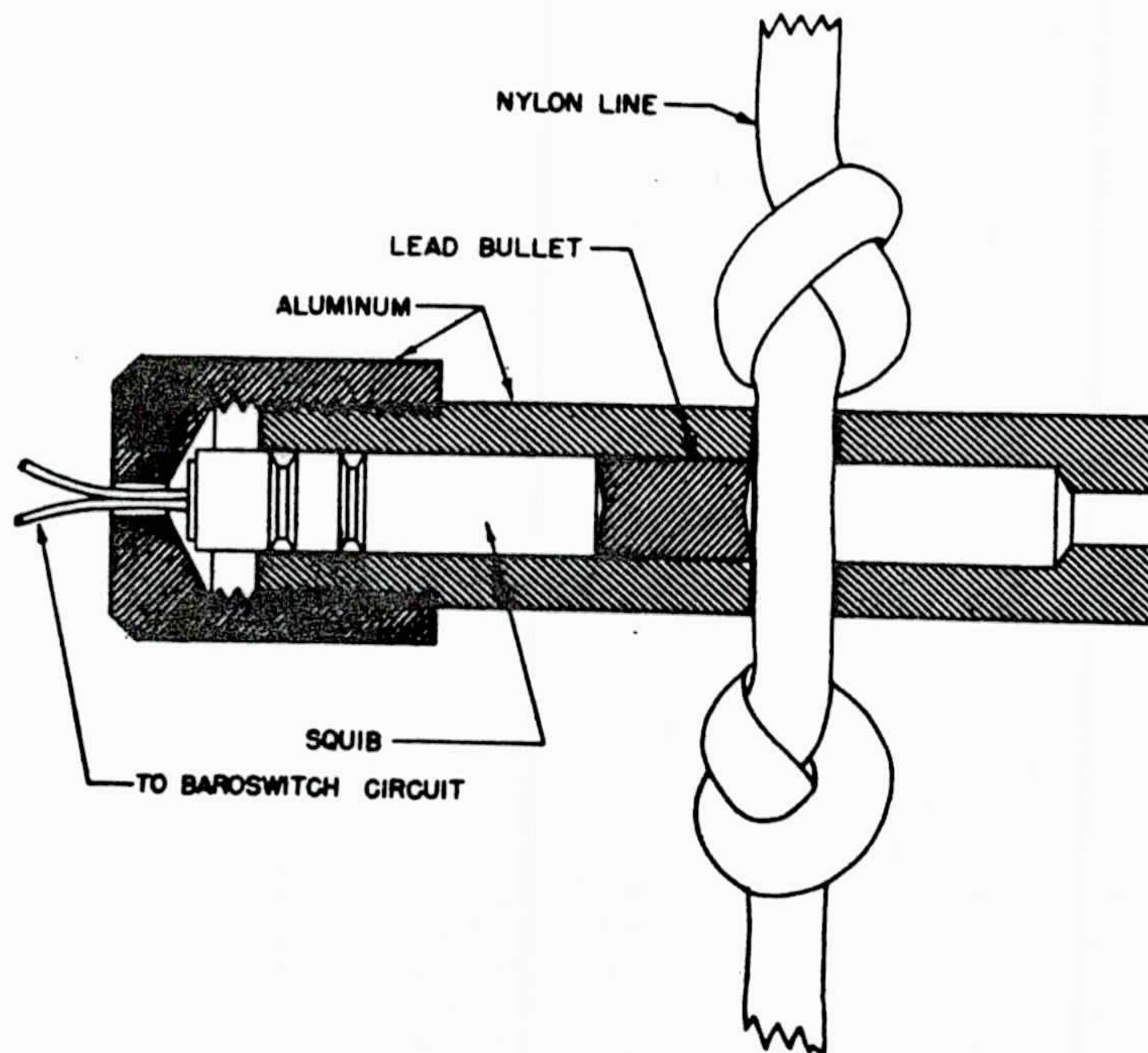


Fig. 14
Rip Assembly Cannon

In all, 115 service flights were made under this contract from various government installations throughout the country. A summary of these flights is listed in Table I (see end of text).

E. Meteorological Analysis

As one phase of this project, New York University agreed to prepare analyses of winds and temperatures in the troposphere for dates and localities specified by Watson Laboratories.

The vertical distribution of temperature from the ground up to heights of about 15 km at the time of any particular experiment was estimated from the routine radiosonde ascents which were nearest in respect to both time and space, to the site of the experiment. If the time of the experiment was within three hours of one of the twice-daily, standard hours of radiosonde observation, the temperature distribution given by such observation was assumed to have existed (within the limits of error in the method of measurement) at the time of the experiment. If the time difference was greater than three hours, a linear interpolation was made between radiosonde observations preceding and following the time of the experiment. Interpolation in space was accomplished ordinarily by assuming a linear horizontal variation of temperature.

However, when weather conditions indicated a markedly discontinuous variation of temperature (i.e. a "front"), appropriate subjective modification of the objective linear interpolation technique was applied.

The vertical distribution of wind was determined mainly from direct observations (pilot-balloon and radio wind-sounding measurements) of free-air winds at weather stations in the area of each experiment. However, actual measurements of winds in the upper half of the troposphere often are scarce or completely lacking, and it was frequently necessary to make use of an indirect method of estimating the wind at elevations greater than 5 km. Charts of the distribution of atmospheric pressure (as given by radiosonde observations) at selected levels between 5 km and 15 km were constructed, and the wind direction and speeds at these levels were computed from the well-known geostrophic wind equation, which relates the wind to the horizontal distribution of pressure.

For the experiments carried out off the east coast of the U.S.A. between 1 August 1946 and 1 August 1947, it seemed feasible to show the distributions of both temperature and wind in vertical cross-section. This was due to the fact that these experiments were made, and the results of same recorded, within a fairly narrow band centered close to a line between Lakehurst, N. J., and Nantucket, Mass., at which points radiosonde and upper-wind observations are taken regularly. However, vertical cross-sections of temperature and wind were abandoned as a method of representation of the distribution pertaining to all subsequent experiments.

There were several reasons for this decision. In the first place, the sites and character of later experiments did not fit into the existing weather-observing network in a manner favorable to cross-sectional representation. In the second place, experience brought about the conclusion that the horizontal gradient of temperature is usually so small that, within the area encompassed by an experiment, the difference in temperature at a given level between points at the ends of a cross-section is no greater than the average error of the radiosonde measurements. Thirdly, it was soon realized that the variability of the wind in space and time is such that an individual pilot-balloon or rawinsonde ascent is not representative of the average vertical distribution of velocity during the interval occupied by a single experiment. Furthermore, as mentioned above, the wind at high levels in the troposphere often had to be inferred by indirect means. Since the true wind usually deviates somewhat from the theoretical geostrophic wind (the latter being derived under certain simplifying assumptions) and since the geometry of the pressure field is subject to some uncertainty owing to inaccuracies in the radiosonde observations, it became apparent that the assignment of a single velocity value at any

given point in a cross-section through the atmosphere was misleading.

In order to avoid the suggestion of greater precision than was warranted by the character of the information available, it was decided, during the autumn of 1947 to present the meteorological diagnoses in a different form. Since that time, graphs (in lieu of cross-sections) have been constructed to show the vertical distributions of the estimated ranges, that is to say, the estimated extremes of temperature and wind on the whole or over a part of the area involved in each experiment.

Since August, 1950, the principal task has been the preparation of diagnoses of conditions existing during experiments being conducted regularly in eastern Colorado, western Nebraska and western Kansas by the Industrial Research Institute of the University of Denver. The design of these experiments necessitates a particularly careful study of the available weather data and the exercise of a considerable amount of synoptic meteorological judgment in the preparation of the wind and temperature diagnoses.

F. Flights Utilizing the Constant Level Balloon System

After completion of the balloon control and telemetering development phases of the project, the balloon systems were utilized under Contracts AF 19(122)-45 and AF 28(099)-10, between this University and the Air Force Cambridge Research Laboratories. A brief review of these projects is as follows:

1. High Altitude Balloon Trajectory Study (Contract AF 19(122)-45)

Under the terms of this contract the Research Division was commissioned to launch and track constant level balloon systems in order to study wind conditions at the 200 mb level of the atmosphere. Flights were to remain afloat until they had traveled approximately 1000 miles.

In order to track the balloon systems, the AM-1 transmitter was operated at 1746 kc, using the radio compass from an aircraft to "home in" on the balloon and position it at specified time intervals. Information on pressure altitude, ballast flow data and balloon, free air and transmitter battery pack temperatures was transmitted through the AM-1 to receivers mounted in the aircraft and recorded on brush recorders for analysis at New York University.

A total of 22 flights (two of which crossed the Atlantic Ocean and were recovered in Norway and Algeria) were

made on this project. A complete report of these flights and the equipment used is included in "Technical Report 121.01" (6) by this Research Division.

2. High Neutron Intensity Study (Contract AF 28(099)-10)

In conjunction with a study to determine the altitude of maximum neutron density a modification was made on the Constant Altitude balloon system developed under this contract. In order to study neutron densities at two different altitudes with the same set of instruments, it was desirable to carry these instruments through a "stepped flight". The balloon system in this case was to ascend to a selected altitude (say 45,000 ft.) float there for one hour and then ascend to a higher altitude (for example 65,000 ft.) to float for another hour before descending.

The advantages of this type flight for Cosmic Ray studies are that a given altitude may be sampled for a long enough period of time to obtain statistically valid results, and such statistical sampling can be made at several levels without the necessity of releasing another balloon system and other set of neutron sensing instruments. By proper design of equipment a fairly wide range of altitudes can be sampled with "altitude steps" of almost any desired size.

The step effect is attained by release of a fairly large amount of ballast at a fast rate set off by a pre-set clock timer or a radio release activated by a transmitter on the ground. The amount of ballast to be released is determined from the standard altitude-volume load relationships used for constant-level balloon flight. As a part of the final ballast release, the ballast tank and its controls may be dropped from the system.

If the level positions of the flight must be controlled to fine limits, or if they must be of long duration (more than two hours) it is necessary to employ constant-level ballast control over these portions of the flight. However, if the level portions of the flight are to be in the neighborhood of 1 hour duration, ballast control during these floating periods can be eliminated, making use of the inherent stability of the plastic balloon systems for short range constant level flights. It is this latter method which was used by the New York University group in the study of Neutron Maxima.

In this study four flights were made to study conditions at altitudes of 45,000 and 60,000 ft. A clock timer was set to cause release of ballast after the system had floated at the lower level for one hour. After ballast was expended the timer caused release of the ballast tank to further reduce the load on the systems. A typical flight of this series is shown as Fig. 15. Further details on this study have been given in reports on "Neutron Intensity Study"(5) by this Research Division.

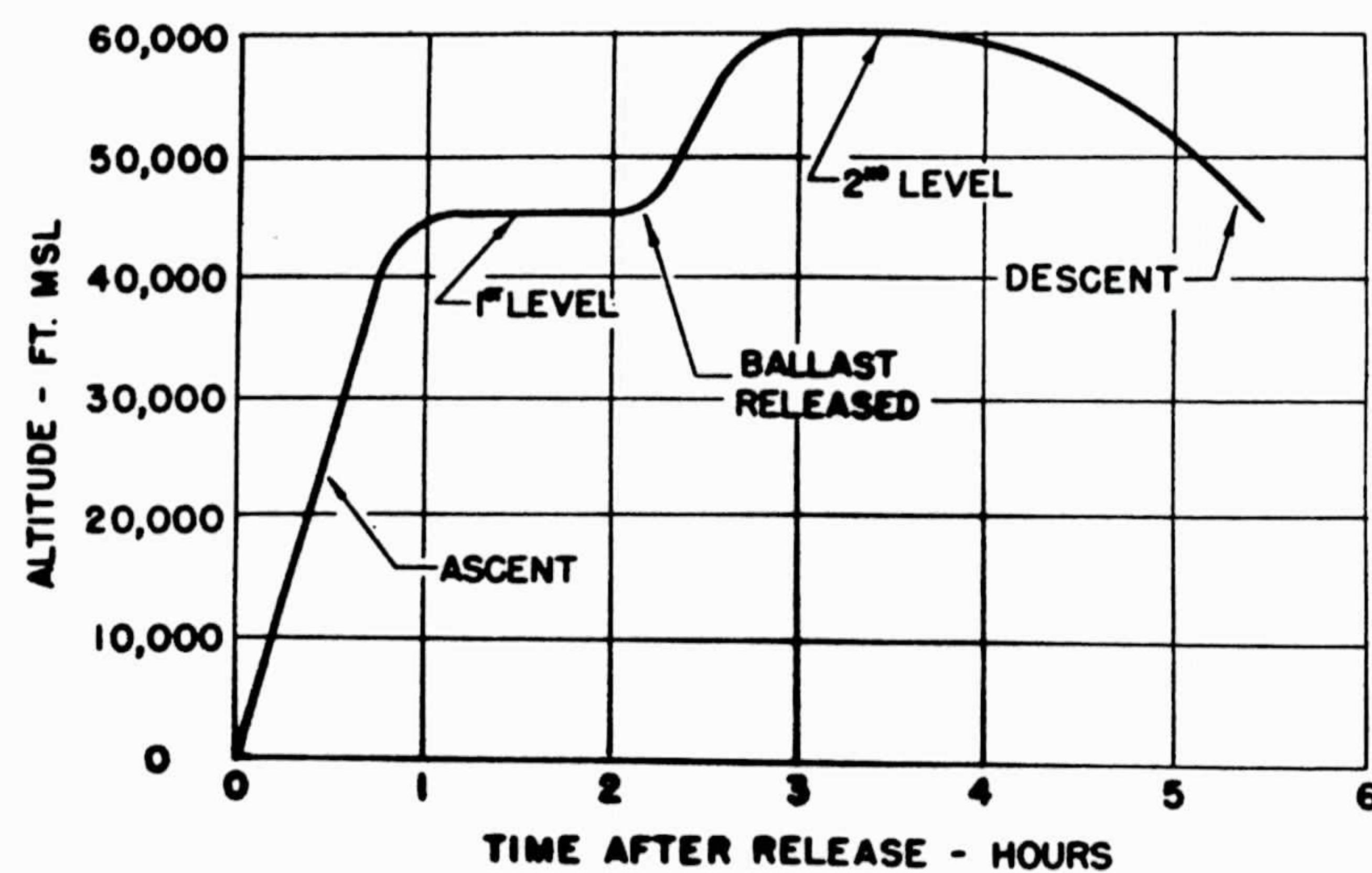
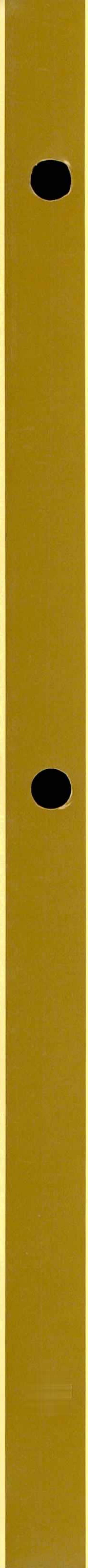


Fig. 15
"Two Level" Stepped Flight

<u>Flight No.</u>	<u>Date</u>	<u>Release Point</u>	<u>Altitude in ft.</u>	<u>Recovery</u>
MXF-1	5/13/48	Maxwell Field, Ala.	60,000	
" -2	5/14/48	" " "	55,000	
" -3	5/14/48	" " "	did not reach Tyler, altitude Ala.	
" -4	5/14/48	" " "	55,000	
E-CW-400-2	7/23/48	Eglin AFB, Fla.	45,000	
" " " -3	8/23/48	" " "	45,000	
" " " -4	8/24/48	" " "	45,000	
" " " -5	8/25/48	" " "	45,000	
" " " -6	8/25/48	" " "	45,000	
" " " -7	8/26/48	" " "	45,000	
" " " -8	8/30/48	" " "	45,000	
" " " -9	8/31/48	" " "	45,000	
" " " -10	9/2/48	" " "	45,000	
" " " -11	9/2/48	" " "	45,000	
" " " -12	9/8/48	" " "	45,000	
" " " -13	9/10/48	" " "	45,000	
" " " -14	9/13/48	" " "	45,000	
" " " -15	9/29/48	" " "	45,000	
" " " -16	9/30/48	" " "	45,000	
" " " -17	11/1/48	" " "	45,000	
" " " -18	11/4/48	" " "	45,000	
" " " -19	11/4/48	" " "	45,000	
" " " -20	11/8/48	" " "	45,000	30° 26' N 86° 29' W
" " " -21	11/8/48	" " "	45,000	
" " " -22	11/9/48	" " "	45,000	
" " " -23	11/15/48	" " "	45,000	
" " " -24	11/15/48	" " "	45,000	
" " " -25	11/16/48	" " "	45,000	
" " " -26	11/17/48	" " "	45,000	
" " " -27	11/18/48	" " "	45,000	12 mi.W., Fitzgerald, Ga. 3:30 P.M. 11/18/48
" " " -28	11/18/48	" " "	45,000	
" " " -29	12/1/48	" " "	45,000	
" " " -30	12/9/48	" " "	45,000	
" " " -31	12/11/48	" " "	60,000	
" " " -32	12/12/48	" " "	62,000	
" " " -33	12/14/48	" " "	65,000	
" " " -34	12/16/48	" " "	65,000	
" " " -35	12/17/48	" " "	65,000	
" " " -36	1/13/49	" " "	Test	
" " " -37	1/13/49	" " "	50,000	
" " " -38	1/14/49	" " "	50,000	
" " " -39	1/15/49	" " "	50,000	
" " " -40	1/28/49	" " "	No release	

<u>Flight No.</u>	<u>Date</u>	<u>Release Point</u>	<u>Altitude in ft.</u>	<u>Recovery</u>
E-CW-400-41	1/28/49	Eglin AFB, Fla.	60,000	
" " " -42	1/28/49	McDill AFB, Fla.	50,000	
" " " -43	2/16/49	Avon Park, Fla.	48,000	
" " " -44	2/17/49	" " "	50,000	
" " " -45	2/18/49	" " "	48,000	
" " " -46	2/21/49	" " "	55,000	
" " " -47	2/22/49	" " "	50,000	
" " " -48	2/22/49	" " "	40,000	
" " " -49	2/23/49	" " "	42,000	
" " " -50	2/23/49	" " "	Equipment failure	
" " " -52	2/24/49	" " "	50,000	
" " " -53	3/2/49	" " "	45,000	
" " " -54	3/3/49	" " "	Instrument failure	
" " " -55	3/3/49	" " "	50,000	
" " " -56	3/4/49	" " "	50,000	
CL-1	6/7/49	Clovis AFB, N.M.	45,000	
" -2	6/10/49	" " "	45,000	
" -3	6/10/49	" " "	45,000	
" -4	6/14/49	" " "	45,000	Graham, Texas
" -5	6/14/49	" " "	45,000	
" -6	6/16/49	" " "	50,000	
" -7	6/23/49	" " "	50,000	Sayre, Okla.
" -8	6/23/49	" " "	55,000	
" -9	7/19/49	" " "	50,000	
" -10	7/21/49	" " "	50,000	Portales, N.M.
" -11	7/21/49	" " "	50,000	
" -12	9/26/49	" " "	50,000	Marlow, Okla.
" -13	10/6/49	" " "	50,000	La Mont, Okla.
" -14	11/18/49	" " "	50,000	Frankel City, Texa
" -15	11/30/49	" " "	50,000	
" -16	12/2/49	" " "	50,000	
" -17	12/6/49	" " "	50,000	Boonville, Miss.
" -18	12/8/49	" " "	50,000	Fort Douglas, Ark.
EN-1	1/23/50	Vance AFB, Okla.	50,000	Centralia, Ill.
"-2	1/31/50	" " "	50,000	Nevada, Mo.
"-3	2/2/50	" " "	50,000	Moore's Hill, Ind.
"-4	2/9/50	" " "	50,000	Sheridan, Ky.
"-5	2/9/50	" " "	50,000	Pt. Hillford,
"-6	2/9/50	" " "	50,000	Nova Scotia, Can.
"-7	2/14/50	" " "	50,000	Jonesboro, Me.
"-8	2/14/50	" " "	50,000	Perkins, Okla.
				Winchester, Ontario, Can.


<u>Flight No.</u>	<u>Date.</u>	<u>Release Point</u>	<u>Altitude in ft.</u>	<u>Recovery</u>
EN-9	2/17/50	Vance AFB, Okla.	55,000	
" -10	3/3/50	" " "	50,000	Washburn, Mo.
KN-1	4/25/50	Sedalia AFB, Mo.	50,000	
" -2	5/12/50	" " "	55,000	Booneville, Mo.
" -3	5/26/50	" " "	55,000	Warrensburg, Mo.
" -4	5/26/50	" " "	40,000	Concordia, Mo.
" -5 Hi.	6/2/50	" " "	50,000	Wapella, Ill.
" -5 Lo.	6/2/50	" " "	40,000	
" -6 Hi.	6/20/50	" " "	50,000	Ashtabula, Ohio
" -6 Lo.	6/20/50	" " "	40,000	
" -7 Lo.	7/11/50	" " "	40,000	Springdale, Ark.
" -7 Hi.	7/11/50	" " "	50,000	
" -8	7/14/50	" " "	40,000	Loysville, Pa.
" -9	7/24/50	" " "	50,000	California, Mo.
" -10	8/31/50	" " "	50,000	
" -11	9/14/50	" " "	48,000	Shelbyville, Tenn.
" -12	9/14/50	" " "	45,000	La Monte, Mo.
" -13	9/22/50	" " "	52,000	
" -14	9/28/50	" " "	48,000	Louisiana, Mo.
" -15	10/5/50	" " "	48,000	
" -16	10/10/50	" " "	45,000	
" -17	10/12/50	" " "	45,000	Marshall, Mo.
" -18	10/17/50	" " "	45,000	
" -19	10/26/50	" " "	50,000	Dickson, Tenn.

In addition service flights were made from Watson Laboratories, AMC Eatontown, N.J., for testing of items of geophysical equipment during the course of the project.

During June, 1949, service flights were made from Luke AFB, Arizona, simultaneously with those made from Clovis AFB, New Mexico.

REFERENCES

1. Research Division, College of Engineering, New York University, Technical Report 93.02, Constant Level Balloons
Section I - General - November, 1949
Section II- Operations - January, 1949
Section III- Summary of Flights - July, 1949
2. Murray, W. D.; Schneider, C. S.; Smith, J. R. - Development and Utilization of Constant Level Balloons - "Transactions of the American Geophysical Union", Dec. 1950.
3. Research Division, College of Engineering, New York University, Technical Report #1, Constant Level Balloon Project #93 - April, 1948.
4. Spilhaus, A. F.; Schneider, C. S.; Moore, C. B. - Controlled Altitude Free Balloons - "Journal of Meteorology" - August, 1948.
5. Research Division, College of Engineering, New York University, Determination of Neutron Maximum at High Altitudes - Progress Reports and Technical Report #118.5, March, 1949 to March, 1950.
6. Research Division, College of Engineering, New York University, Technical Report 121.05 - High Altitude Balloon Trajectory Study, June, 1950.
7. Research Division, College of Engineering, New York University, Final Report 93.17, Radio Transmitter, Receiver and Recording Systems for Constant Level Balloons - June, 1948.

New York University Constant
Level Balloons
Section 1, General

RESEARCH DIVISION
COLLEGE OF ENGINEERING
NEW YORK UNIVERSITY

2
Technical Report No. 93.02
CONSTANT LEVEL BALLOONS
SECTION 1
GENERAL

Prepared for
AIR MATERIEL COMMAND
Watson Laboratories
Red Bank, N. J.
Project No. 93
Contract No. W28-099-ac-241

Technical Report No. 93.02

CONSTANT LEVEL BALLOONS
Section 1

GENERAL

Constant Level Balloon Project
New York University

Prepared in accordance with provisions of contract
W28-099-ac-241, between
Watson Laboratories, Red Bank, New Jersey
and
New York University

The research reported in this document has been made possible
through support and sponsorship extended by the Geophysical
Research Directorate of the Cambridge Field Station, AMC,
U. S. Air Force, under Contract No. W28-099-ac-241. It is
published for technical information only and does not repre-
sent recommendations or conclusions of the sponsoring agency.

Prepared by: James R. Smith
and
William D. Murray

Approved by:

Harold K. Work
Dr. Harold K. Work
Director of the Research Division

College of Engineering
New York University
15 November 1949
New York 53, New York

TABLE OF CONTENTS

	<u>Page Number</u>
I. <u>Introduction</u>	5
Contract Requirements	5
Project Facilities	6
II. <u>Principles of Balloon Control</u>	6
III. <u>Methods of Attack</u>	8
Rubber Balloons	8
Plastic Balloons	9
Internal-Pressure Balloons	14
Altitude Controls	16
Flight Simulation	25
Flight Termination Gear	29
IV. <u>Equations and Theoretical Considerations</u>	30
Floating Altitude and Altitude Sensitivity	30
Rate of Rise	33
Superheat and its Effects	34
Adiabatic Lapse Rate	38
Diffusion and Leakage of Lifting Gas	40
Bursting Pressure and Appendix Considerations	47
A General Equation of Motion	56
V. <u>Telemetering</u>	62
Information Transmitted	62
Transmitters Used	63
Receivers and Recorders Used	65
Batteries Used	65
Radio Direction-Finding	66
Radar and Optical Tracking	67
VI. <u>Instrumentation</u>	67
Altitude Determination	67
Temperature Measurements	74
Ballast Metering	76
VII. <u>Conclusions</u>	79

I. INTRODUCTION

A. Contract Requirements

On November 1, 1946 the Research Division of the College of Engineering of New York University entered into Contract W28-099-ac-241 with Watson Laboratories of the Air Materiel Command. Under this contract the University was commissioned to design, develop and fly constant-level balloons to carry instruments to altitudes from 10 to 20 kilometers, adjustable at 2-kilometer intervals.

The following performance was specified:

1. Altitude to be maintained within 500 meters.
2. Duration of constant level flight to be initially 6 to 8 hours minimum, eventually 48 hours.
3. The accuracy of pressure observation to be comparable to that obtainable with the standard Army radiosonde ($\pm 3-5$ mb).

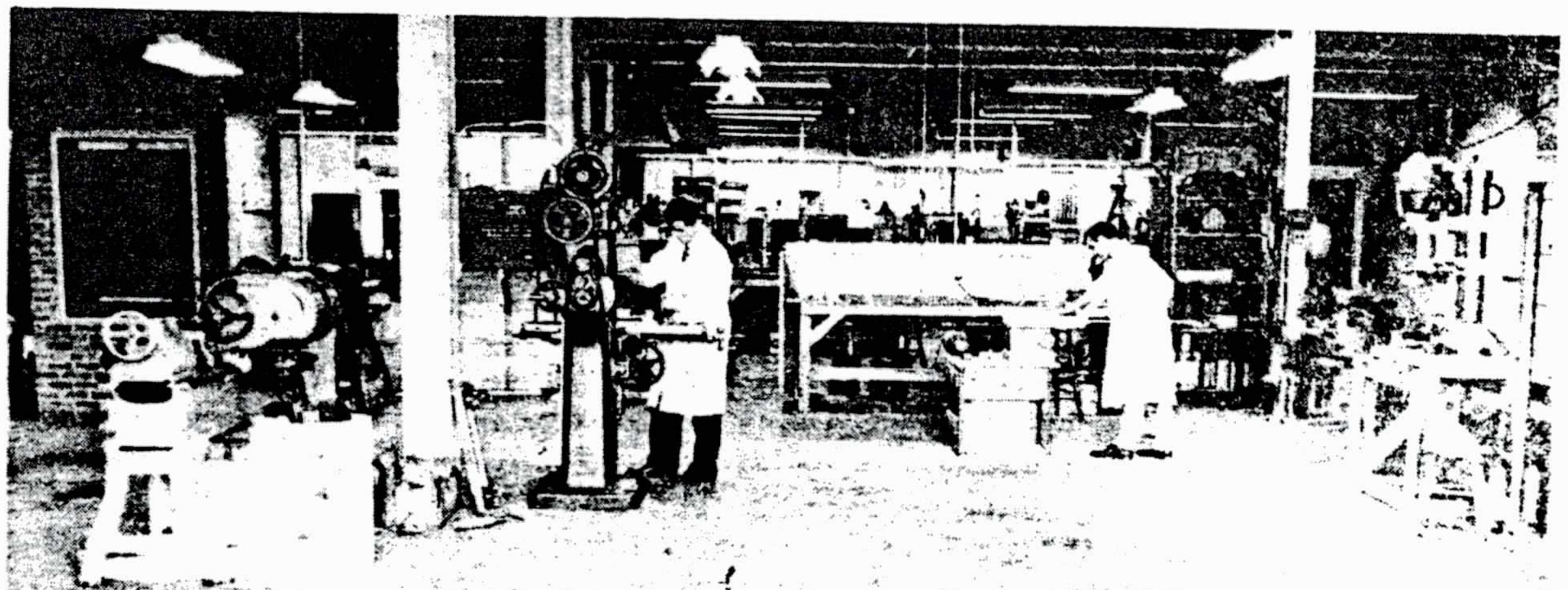
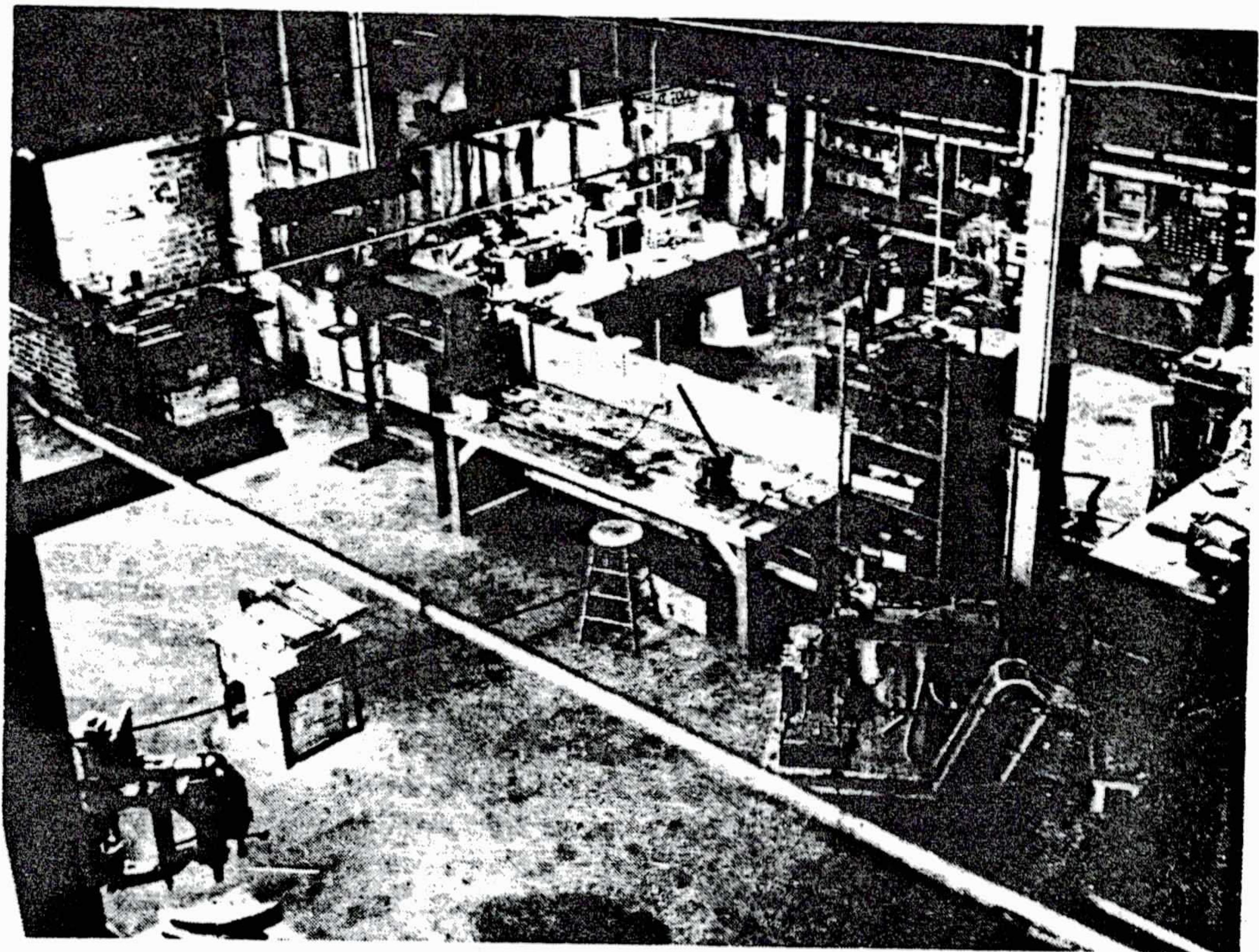
In addition to this balloon performance it was desired that:

4. A balloon-borne transmitter be developed for telemetering of information from the balloon to suitable ground receivers.
5. Positioning of balloon during flight be determined by ground tracking such as radar or radio direction-finding or theodolite.
6. Appropriate meteorological data be collected and interpreted.

Following the first year of work the contract was renewed for a 1-year period, and in addition to the provisions of the original contract it was agreed that a total of 100 test flights would be launched by the University.

In September, 1948 a second renewal of the contract was effected. With this renewal, which expires in March, 1949, it is expected that the development of equipment will be concluded. Further extensions are under consideration whereby New York University will supply standardized flight gear and flight service personnel for routine test flights.

B. Project Facilities



To meet the requirements of the contract, a research group was built up and the following facilities were made available:

1. Administrative section.
2. Engineering personnel were assigned to one or more of the following groups:
 - (a) Balloon section
 - (b) Performance control section
 - (c) Telemetering section
 - (d) Analysis section (including meteorological and performance data analysis)
3. A small machine shop was provided to manufacture experimental models of equipment which was flown.
4. A field crew for launching, tracking and recovery of balloons was established.

Work-shop, laboratory, office and storage space was provided by New York University (Figures 1 and 2). Field work was largely conducted at Army bases and Air Forces installations. At one time the number of full-time employees reached 26 with 17 part-time men on the staff at that time. Most individuals were called upon to work in several departments depending upon the urgency of field work, equipment preparation or development work.

II. PRINCIPLES OF BALLOON CONTROL

Following preliminary investigations, two distinct principles of achieving constant-pressure altitude for free balloons were studied in detail. The first of these is the maintenance of the balloon at floating level by the use of a servo-mechanism or other control which causes the supported load to vary with the buoyancy of the balloon. The second principle embodies the use of a non-extensible balloon capable of withstanding a high internal pressure. With a fixed volume and a given load, such balloons remain at a constant pressure level as long as the internal pressure of the balloon is equal to or greater than that of the air at floating level. A surplus of buoyancy causes super-pressure, but when the gas is cooled relative to the air environment such a surplus is needed to prevent excessive reductions in balloon pressure. Whenever the balloon's internal pressure becomes less than that of the air, it falls to earth. Such a balloon was used by the Japanese for the fire bombing of the western United States during World War II.

Figures 1 and 2. Interior views, Research Division Shop.

To use the first of these principles it is possible to maintain a condition of buoyancy by at least the following two methods: (1) dropping a part of the load, as ballast, to match the loss of lifting gas which occurs as a result of diffusion and leakage; (2) replacement of the lifting gas by evaporation from a reservoir of liquified helium or hydrogen. Of these two methods, ballast dropping is most satisfactory from the consideration of simplicity of control and safety of personnel. While the use of liquid helium is theoretically more efficient, the amount and complexity of control equipment adds much to the cost and also the weight of air-borne equipment.

The development of non-elastic balloons which can withstand high internal pressure was investigated. Two designs which compromise extreme cost (required for balloons of high internal pressure) with small wall strength, hence small super pressure, were tested.

At first, attempts were made to control balloon performance by using buoyancy-load balance techniques with elastic balloons, but the difficulties which were experienced resulted in the development of a third principle of operation combining a non-extensible balloon with a system of controls which can be applied either to a freely expanding balloon or to a balloon of fixed volume.

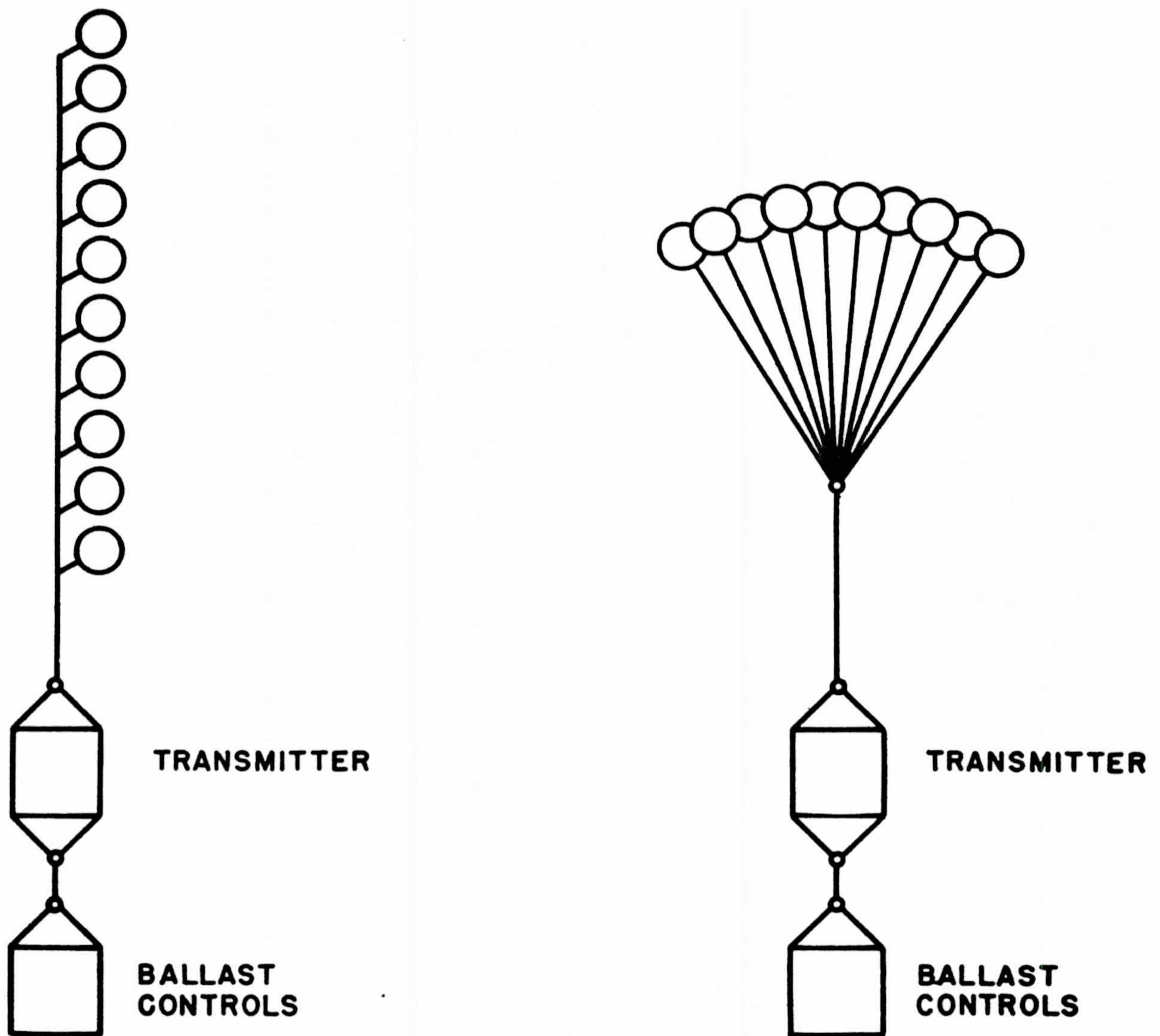
III. METHODS OF ATTACK

The work on the development of controlled-altitude balloons may be divided into three phases, each one identified by the type of balloon which was used. Concurrent with the balloon development was the design and testing of control equipment required to maintain the balloon at specific altitudes. Some of the equipment instrumentation was used on more than one kind of balloon, but in general the problems and methods of attack are identified with one of the three types of balloons.

A. Rubber Balloons

Following the example of Clarke and Korff, assemblies of neoprene rubber balloons were first considered. Using these freely expanding balloons it was necessary to balance the load to be lifted with the buoyancy given by an integral number of balloons. One or more accessory balloons were attached to the assembly to provide lifting force to carry the train aloft. With the gear at a predetermined altitude, the lifting balloons were cut loose from the train by a pressure-activated switch, leaving the equipment at floating level, more or less exactly balanced. Since there is no inherent stability in an extensible balloon, any existing unbalance will cause the train to rise or fall indefinitely until the balloon reaches

its bursting diameter, the gear strikes the ground, or corrective action is taken. Even if the extremely critical balance is initially achieved, there will be unbalance occasioned by (1) bursting of balloons due to deterioration in the sunlight, (2) diffusion of lifting gas from the balloons, (3) loss or gain of buoyancy when temperature inside the balloon changes with respect to the ambient air temperature. This will result initially from radiative differences, and after an amount of difference (superheat) has been established, changes in ventilation will cause changes in buoyancy.


Two methods of attaching the payload to the clusters of rubber balloons were tried. In the first of these (Figure 3) a long load line was used, and short lines led from it to the individual balloons. The length of such arrays was as much as 800 feet, and this size made them difficult to launch. The single load ring array, seen in Figure 4, proved to be much easier to handle and is recommended for cluster launchings. During ascent each of the balloons in such an array ride separated from each other and no rubbing or chafing has been observed.

The controls which were associated with this balloon system were crude and, in general, ineffective. They included (1) cutting off balloons as the buoyancy became excessive and a preset altitude extreme was passed, and (2) releasing part of the load in the form of solid or liquid ballast whenever descent occurred. The sensitivity of these elastic balloons makes it difficult to control their altitude with any system of controls, and as controls were developed it was found more practical to change from freely expanding balloons to non-extensible cells not made of neoprene. The tendency of neoprene to decay within a few hours when exposed to sunlight was the most cogent argument against doing more work on altitude controls to be used with such a system.

B. Plastic Balloons

The next attempts to control the altitude of a balloon vehicle were made using non-extensible plastic cells, with an open bottom to prevent rupture when expansion of the lifting gas is excessive. With a fixed maximum volume, such a system has inherent vertical instability in only one direction. When full, there is a pressure altitude above which a given load will not be carried. The instability of such a system is found only when an unbalanced downward force exists. The development of controls and films for balloon material proceeded concurrently, but the choice of a non-extensible plastic film was made before the system of control was perfected.

The properties which were given most consideration in the selection of fabric include (1) availability and cost, (2) ease of fabrication and (3) satisfactory chemical and physical properties. Pri-

Figures 3 and 4. Typical rubber balloon arrays.

mainly on the cost basis, an extruded film of plastic was found to be superior to fabrics such as silk or nylon with the various coatings.

The physical and chemical properties needed in a balloon material are: (1) chemical stability, (2) low permeability, (3) high tensile strength, (4) low brittle temperature, (5) high tear resistance, (6) high transparency to heat radiation and (7) light weight.

In Table 1 the properties of 7 plastics and 2 coated materials are given. From this data polyethylene and saran appear to be the most suitable films.

Table 1

Fabric	Low Temperature Properties	Permeability	Tensile Strength	Tear Resistance	Ease of Fabrication	Stability to Ultraviolet
Polyethylene	Good	Medium	Low	Good	Good	Good
Saran	Fair	Low	High	Poor	Fair	Fair
Nylon	Good	Low	High	Low	Good	Good
Vinylite	Very poor	Medium	Medium	Good	Good	Good
Teflon	Believed good	Low	High	Good	Cannot be fabricated	Good
Ethocellulose	Good	Very high	Low	Fair	Good	Good
Pliofilm	Poor	High	Poor	Fair	Good	Poor
Nylon or silk fabric coated with:						
Neoprene	Fair	Low	High	Fair	Fair	Fair
Butyl rubber	Good	Low	High	Fair	Fair	Good

Having decided upon the proper fabric to be used, an effort was made to interest a number of companies in the fabrication and production of balloons. The first supplier of balloons made of polyethylene was Harold A. Smith, Inc., Mamaroneck, New York. In these balloons, 4 and 8 mil sheets were heat sealed to form a spherical cell open at the bottom. Load attachment tabs were set into the fabric and loading lines ran from these tabs to a load ring. This method of supporting the load proved to be unsatisfactory.

Subsequently, other companies produced balloons of one type or another for us; the total number and type of balloons purchased is given in Table 2.

Table 2
Plastic Balloons

Company	Film Type, Thickness Diameter, Shape	Special Features	Unit Cost	No. Delivered to Date
Harold A. Smith, Inc.	.004 polyethylene 3-ft.diam., spherical	Prototype	\$150.00	4
" " " "	.008 polyethylene 15-ft.diam., spherical	Low perme- ability	530.00	5
" " " "	.004 polyethylene 15-ft.diam., spherical	Low perme- ability	530.00	5
General Mills Inc.	.001 polyethylene 7-ft.diam., tear- drop	Stressed tape type seam	20.00	25
" " "	.001 polyethylene 20-ft.diam., tear- drop	Stressed tape type seam	125.00	175
" " "	.001 polyethylene 30-ft.diam., tear- drop	Stressed tape type seam	250.00	15
" " "	.001 polyethylene 70-ft.diam., tear- drop	Stressed tape type seam	900.00	5
The Goodyear Tire & Rubber Company, Inc.	.004 polyethylene 20-ft.diam., egg- plant	Stressed tape type seam and low permeability	475.00	10
Winzen Research, Inc.	.015 polyethylene 20-ft.diam., tear- drop	Low perme- ability	115.00	20
<u>Non-Plastic Balloons</u>				
Dewey and Almy Chem- ical Co.	J-2000 neoprene balloon with nylon shroud of 15-ft. diam., spherical	Internal pressure	325.00	3
Seyfang Laboratories	Neoprene-coated nylon 22.5-ft. diam., spherical	Internal pressure	550.00	10

Teardrop shaped polyethylene balloons were produced by General Mills Inc. and Winzen Research, Inc., both of Minneapolis, Minnesota. The General Mills cells were supplied in four sizes with the diameters of 7, 20, 30 and 70 feet to carry loads to varying altitudes. A 20-foot balloon is shown in Figure 5.

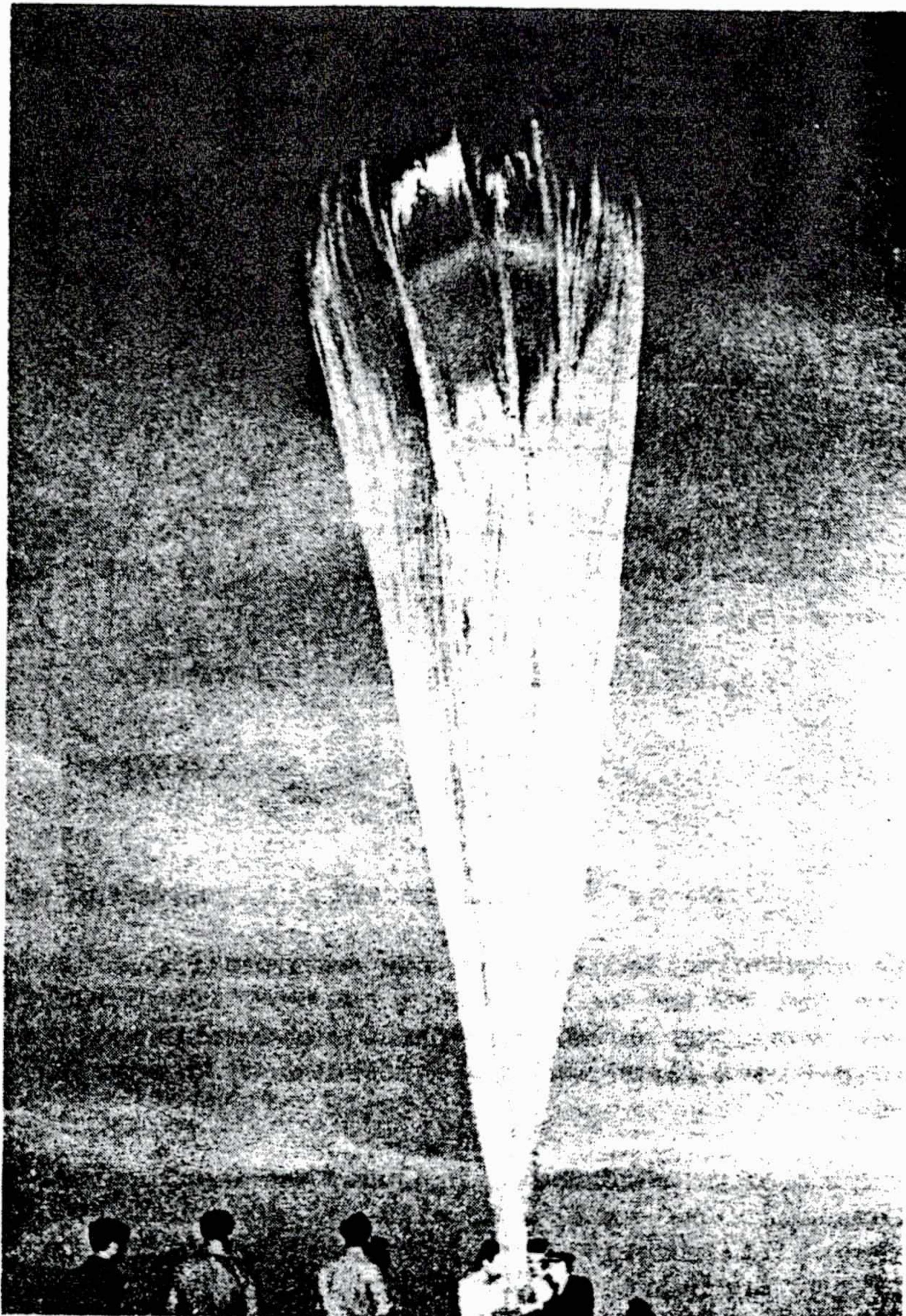


Figure 5. 20'-Diameter, teardrop polyethylene balloon.
In all of these, film is .001" polyethylene, butt welded with fiber tape laid along the seams to reinforce the seal, and to carry

and distribute the load. These tapes, which converge to the load ring at the bottom, actually support the load (Figure 6). An open bottom permits the escape of excess lifting gas and thus prevents rupture.

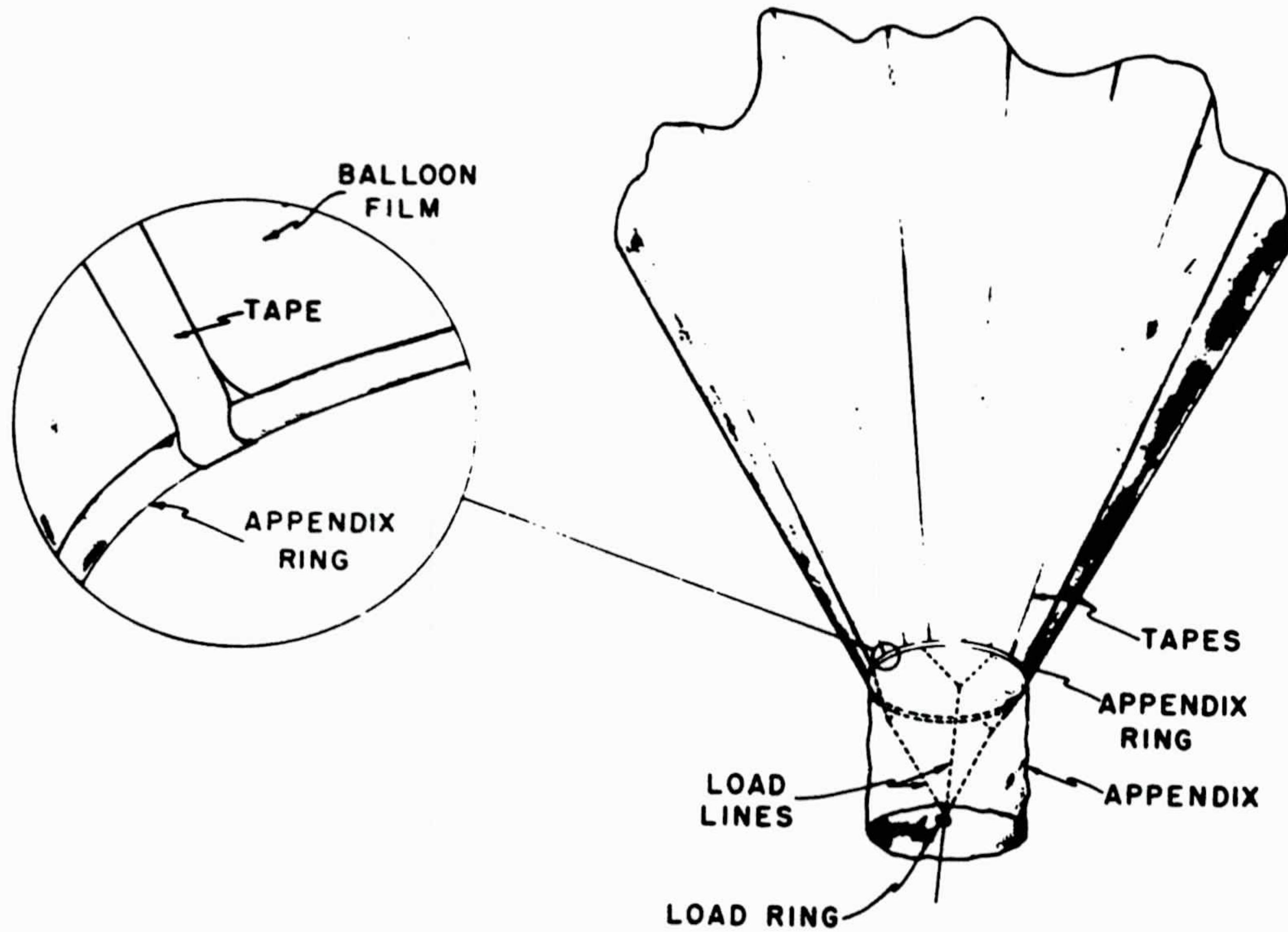


Figure 6. Appendix detail, polyethylene balloon.

On the Winzen balloons, which are made from .015" polyethylene, all but two of the balloons were made with similar fiber tape reinforcements; these two were produced without tapes and both of them have been flown with no evidences of unsatisfactory performance.

The eggplant shaped balloon produced by The Goodyear Tire & Rubber Company, Inc. has been flown with satisfaction, but the exact amount of diffusion, which is expected to be low from this balloon, is not yet known.

C. Internal-Pressure Balloons

From a theoretical standpoint the most satisfactory means of keeping a balloon at constant pressure-altitude is to use a non-extensible

cell with very low diffusion through the walls and one capable of maintaining super-pressure in excess of that lost with reductions of gas temperature. Such a balloon could be sealed off completely or a pressure-activated valve could be used to permit efflux of the gas when the bursting pressure is approached. The neoprene-coated nylon balloon built by Seyfang Laboratories (Figure 7) has been used with a valve set to prevent rupturing.

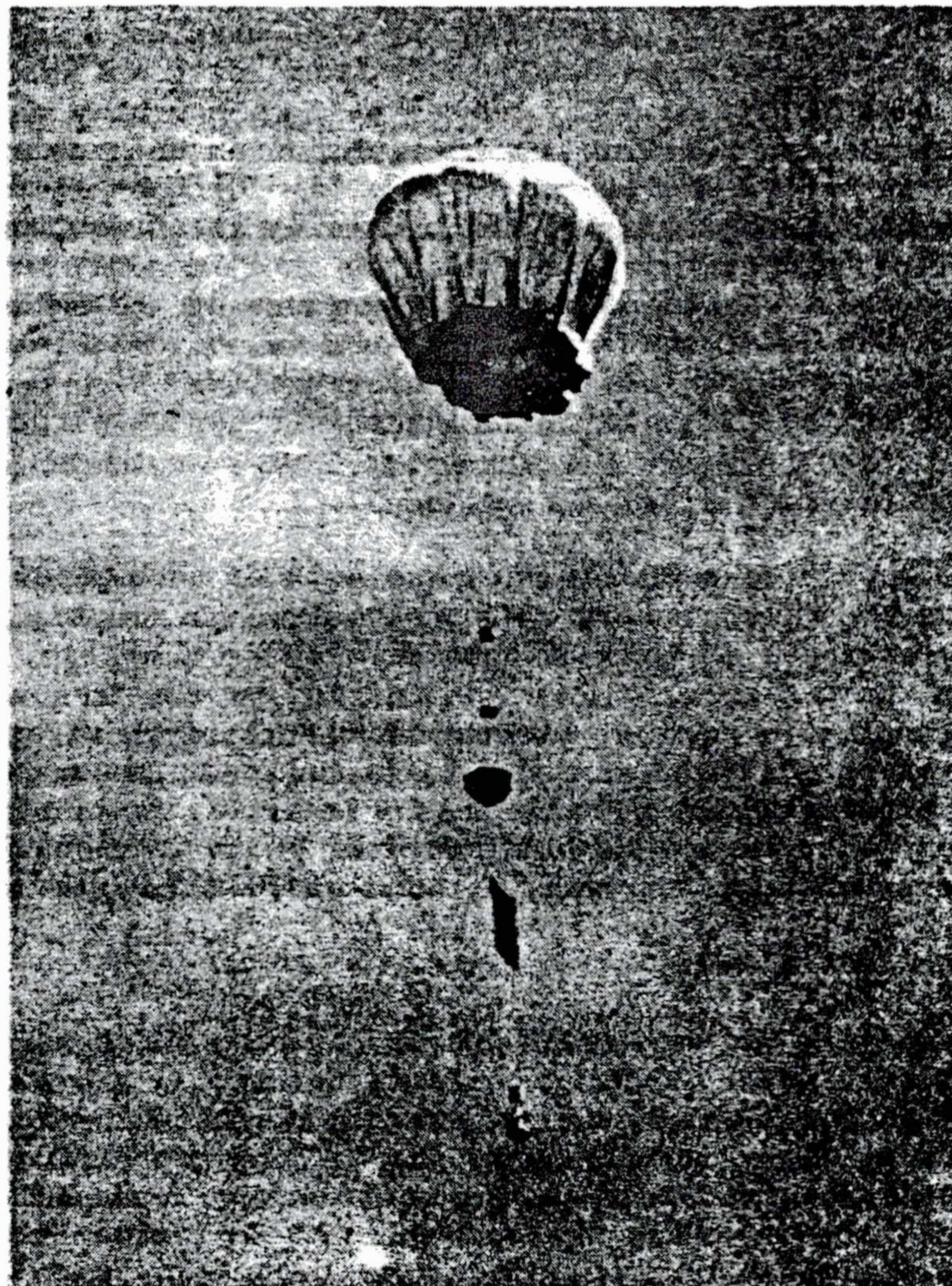


Figure 7. Neoprene-coated nylon balloon,
two-thirds inflated.

The fabric has been coated with a metallic paint to minimize the effects of radiation. However, the values of superheat obtained by the gas when the balloon is in the sun have been of the order of 300°C. The amount of buoyancy lost when circulation

or sunset cuts off the superheat is so large that it is not possible to carry enough ballast to sustain the system under these conditions. On the other hand, the loss of buoyancy through a sealed-off Seyfang balloon at 4100 feet MSL is of the order of 50 grams per hour which is significantly less than the loss expected from a 20-foot, 1 mil polyethylene cell in flight conditions. (With the appendix aperture sealed, such a cell shows a loss of lift of about 40 grams per hour when one-fifth inflated at sea level).

One other type of balloon which has been used as a super-pressure balloon is the neoprene J2000 balloon of Dewey and Almy, surrounded by nylon cloth shroud. The rubber balloon normally would expand until it reached bursting diameter, but when enshrouded, it is limited to the volume of the shroud. The difficulties in launching and flying this balloon are not unusually great, but on each of the several tests which have been made to date improper handling has been a possible cause of the early rupture of the balloon. It is believed, however, that such a balloon is not especially suitable for long flights because of the deterioration which occurs in the neoprene in the presence of sunlight. Perhaps a shroud of material which would filter out the ultraviolet rays would protect and lengthen the life of such a balloon.

Despite the success of the Japanese silk or rice-paper balloons, which were constructed on a super-pressure principle, it is not believed practical at this time to develop a balloon of such strength that it would successfully withstand and retain pressure increases corresponding to the temperature changes from night to day as the superheat of absorbed sunlight is gained. The super-pressure with a neoprene-coated nylon balloon, for example, would be approximately 0.5 psi. That such a balloon could be built is unquestioned. The cost of production, however, appears at this time to be unwarranted.

D. Altitude Controls

Beginning with the arrays of rubber balloons which were first used, various systems of dropping ballast, both solid and liquid, have been attempted with the aim of exactly compensating for the loss of buoyancy which is occasioned as the lifting gas diffuses or leaks through the balloon. On the early rubber balloons only rough incremental ballast dropping was employed. At that time it was decided not to use sand as ballast since most sand contains some water which may freeze while aloft. Further, it is easier to control the flow of a liquid ballast than it is to control sand particles. In the investigations for a suitable liquid ballast the petroleum product known commercially as Mobil Aero compass fluid was finally settled upon. These investigations included tests of cloud point, freezing point, and also density and viscosity over a large range of temperatures. The compass fluid is especially suitable for ballast work

in high altitudes, since it freezes below -80°C and will flow readily at low temperatures. Also, this fluid will absorb only a very slight amount of water which might freeze aloft.

Basically three different principles have been used in the control of ballast flow. The first of these is calculated constant flow; the second is displacement-switch control; and the third is rate-of-ascent switch control.

(1) Constant Flow

In the simplest of the control systems, liquid ballast is allowed to flow continuously through an orifice (Figure 8) at a pre-determined rate. This rate is set to slightly exceed the ex-

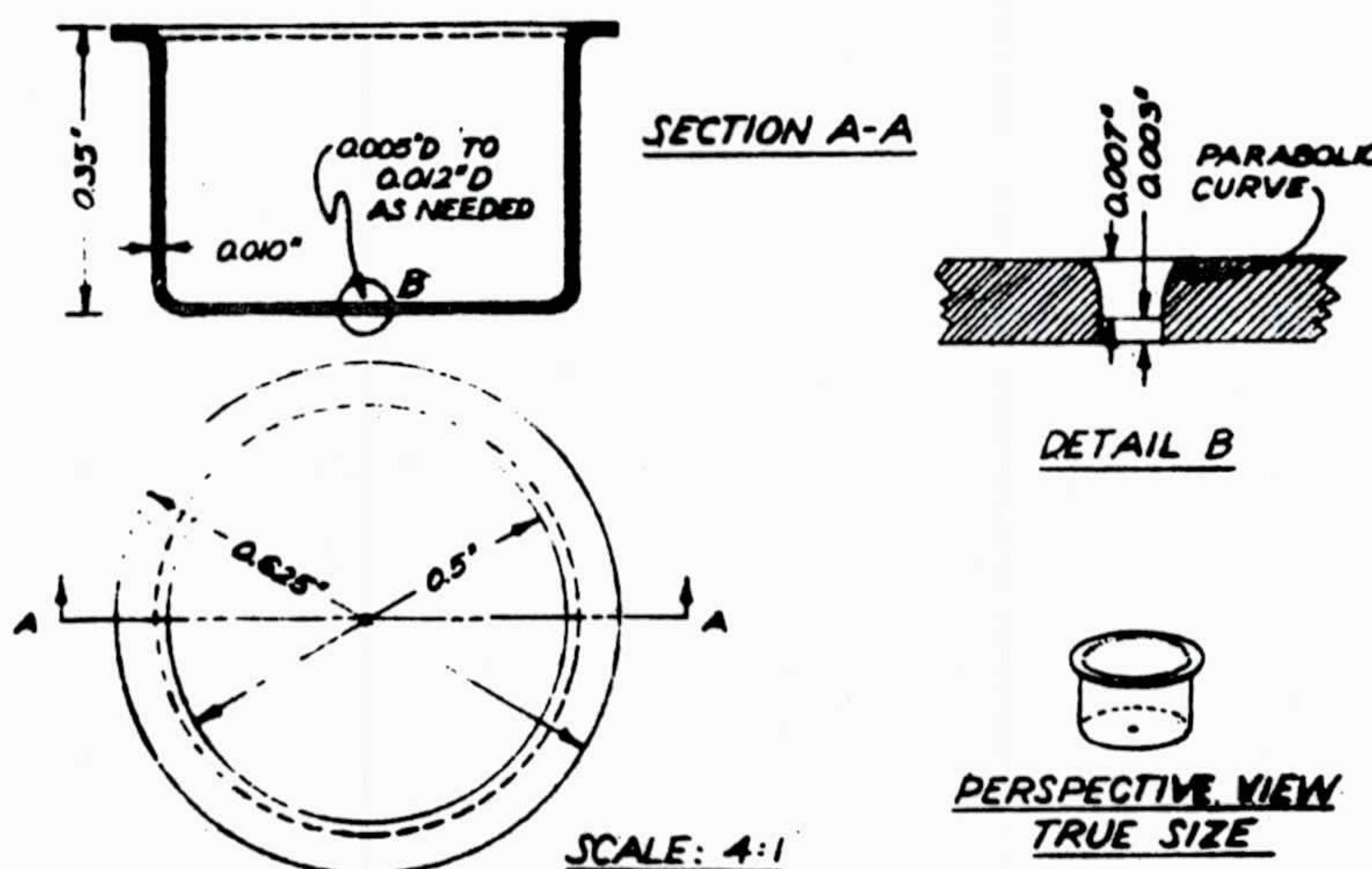


Figure 8. Orifice for fixed-rate ballast flow.

pected loss of lift of the balloon due to leakage and diffusion. If this method is successfully used, the balloon stays full because the gas remaining in it has less load to support. Therefore, the balloon will rise slowly as ballast is dropped, maintaining equilibrium between the buoyancy and the load. In the General Mills 20-foot balloon, for example, diffusion losses are about 200 grams per hour at altitudes near 40,000 feet. The balloon at its ceiling of 40,000 feet with a 26-kilogram payload rises about 700 feet with each kilogram of ballast dropped. This means that such a balloon using this constant-flow type control will float at a "ceiling" which rises at the rate of about 140 feet per hour. Constant flow was first obtained by use of the manual ballast valve shown in Figure 9. Due to excessive clogging of this valve, caused by its annular ring opening, gate-type valves were tested, and finally the use of

simple orifices of various sizes replaced the manual ballast valve.

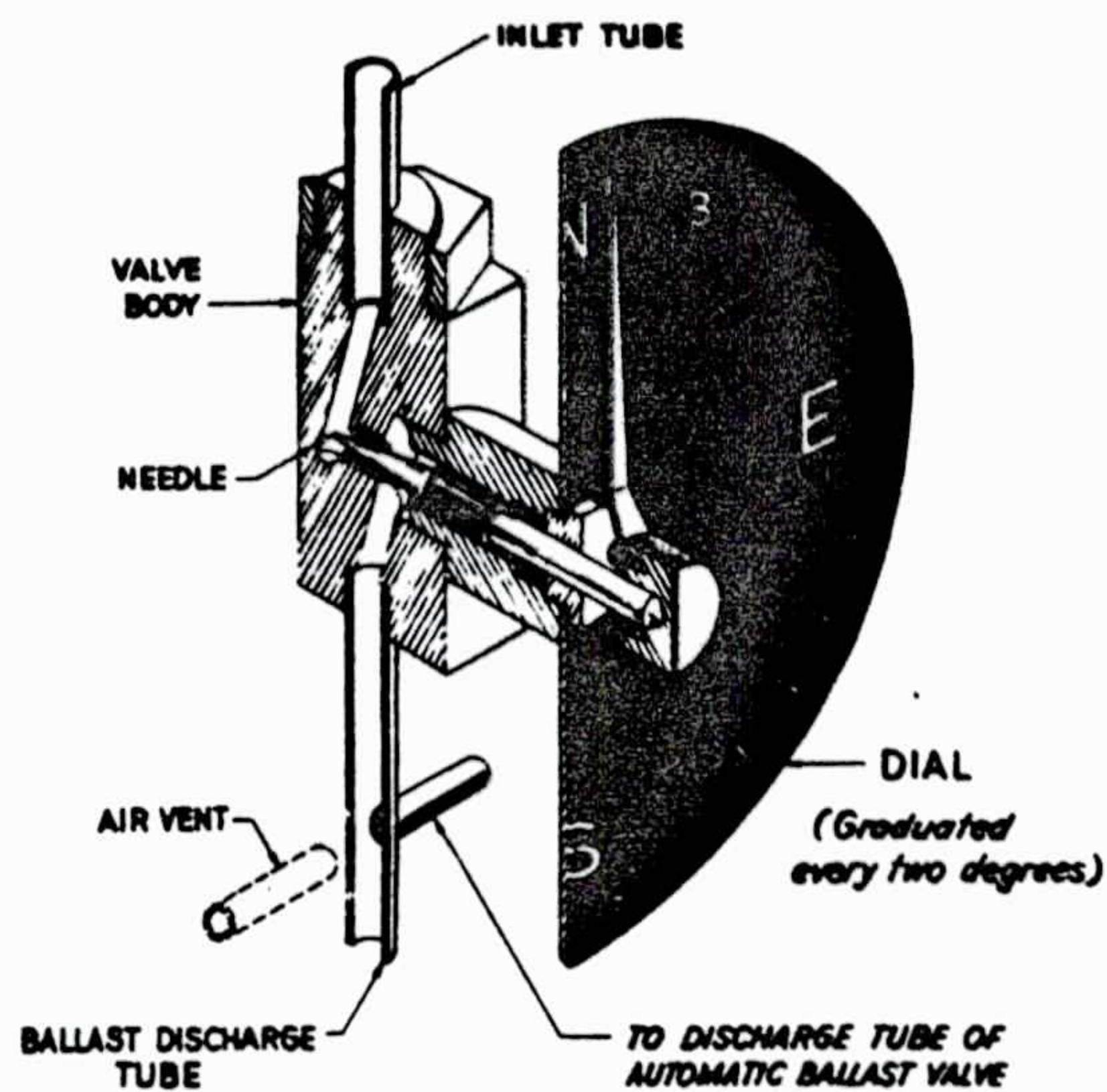


Figure 9. Manual ballast valve.

(2) Displacement Switch

The displacement principle in ballast control has been used in two different types of valves. The first of these, called the "automatic ballast valve," used a needle valve, controlling ballast flow by an aneroid capsule to which the needle was attached (Figure 10). The aneroid capsule was open to the atmosphere on ascent; as the balloon began to descend to a region of higher pressure, a minimum pressure switch was used to seal off the capsule and further descent caused ballast flow. (For details see Technical Report No. 1, Constant Level Balloon Project, Research Division, College of Engineering, New York University, New York, N.Y., 1948.)

There are three undesirable features of this system. Greatest is the effect of temperature changes on the air sealed in the capsule. Seal-off pressure acts as a datum plane. Any increase from this pressure causes compression of the aneroid, and ballast flows proportionally to the difference from seal-off pressure. However, with changes of temperature of the entrapped air, the activation pressure of the valve changes, the floating level is thus also a function of temperature of the gas in the aneroid.

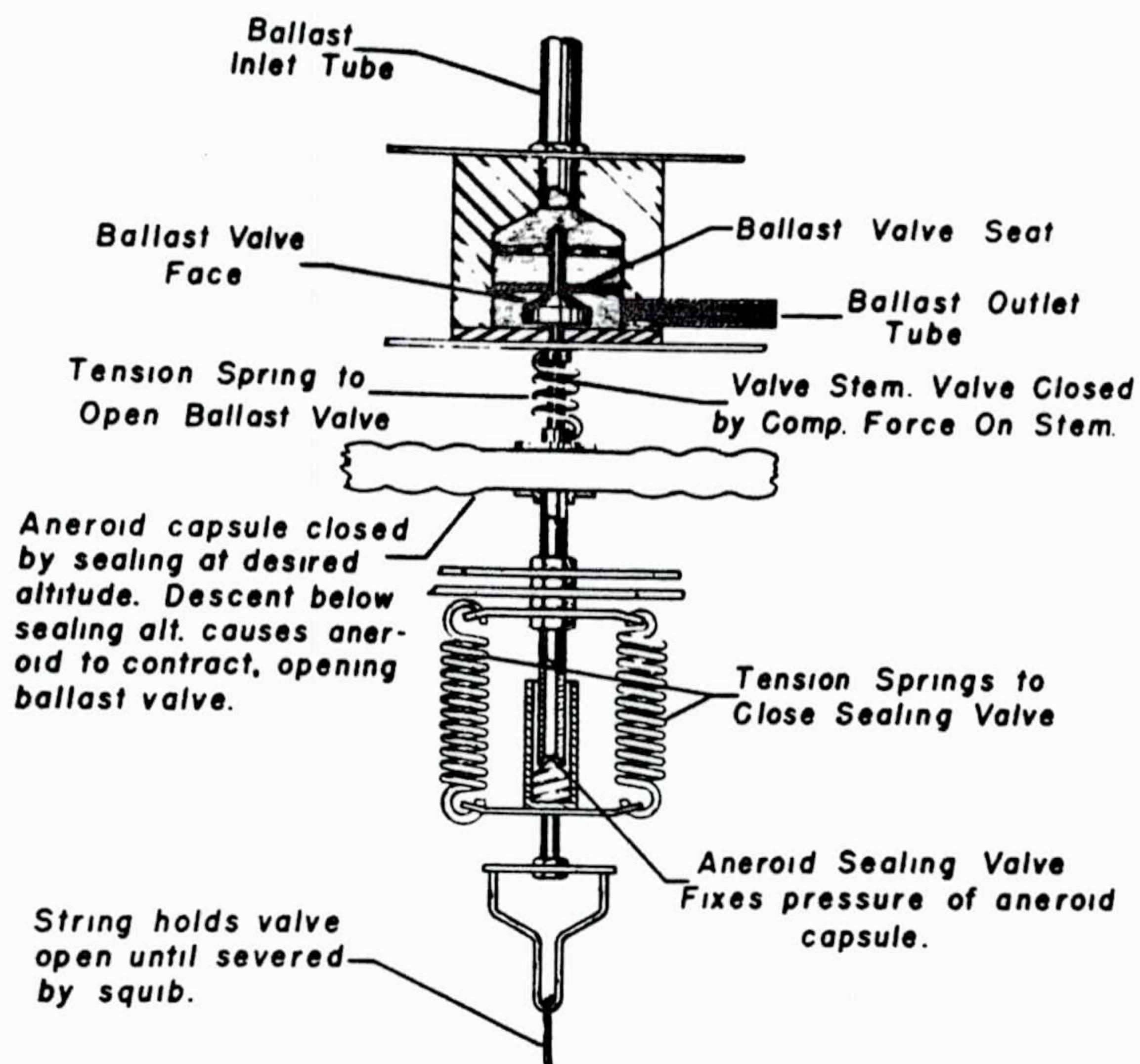


Figure 10. Automatic ballast valve.

The second undesirable feature of the automatic ballast valve system is the lag induced by the use of a minimum pressure switch to seal off the aneroid capsule. This is in addition to the lag of the aneroid itself. If a mercury switch is used, the differential between minimum and seal-off pressure is about 8 millibars; with a less dense liquid, the operation will still require about a 2-millibar difference. If the sealing is done by a fixed pressure switch, it is then necessary to predict the altitude to which the balloon will rise. Failure to reach this height would leave the aneroid open and useless. Deliberate under-estimation of the ceiling causes a relatively long period of uncontrolled slow descent before control begins.

The third unwanted feature is the waste of ballast which flows during both descent and ascent of a balloon whenever it is below the seal-off elevation. Since the balloon is no longer "heavy" when its downward motion has been arrested, flow during the return to the datum plane is needless and indeed

will cause an overshoot, hence the unnecessary exhaust of some lifting gas.

The effects of temperature on the aneroid capsule of the automatic ballast valving system were eliminated by the use of a ballast switch which uses a vacuum-sealed aneroid, set to permit ballast flow through a valve whenever the balloon is below a given pressure altitude. In this system the minimum pressure switch and the lag caused by its use are eliminated. This displacement-switch control has the disadvantage that the flow which it permits is not proportional to the displacement of the balloon below a datum plane but is constant through the valve. Normally this flow is large to permit rapid restoration of equilibrium. A second disadvantage is the requirement of batteries to supply power to the electrically operated valve. However, the advantage of eliminating the temperature effects on the aneroid compensates for these two comparatively minor disadvantages.

In practice, the displacement switch has consisted of a modified radiosonde modulator in which the standard commutator is replaced by a special bar which is an insulator above a certain point and a conductor at lower levels (higher pressures). When the aneroid pen arm is on the conducting section of the commutator, a relay opens the ballast valve. To prevent excessive flow on ascent, the pen arm rides on an insulated shelf above most of the contact segment of the commutator (Figure 11).

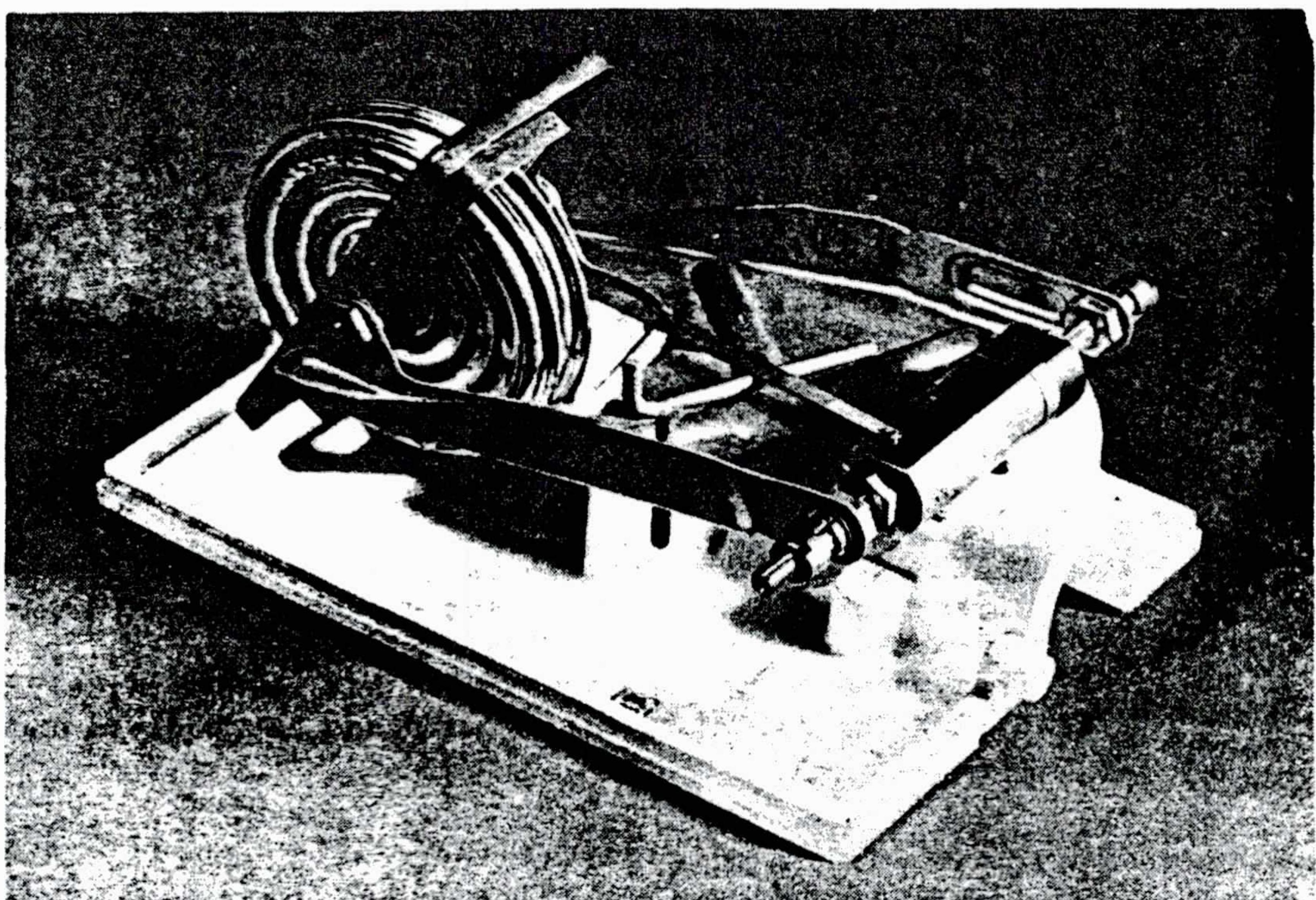


Figure 11. Pressure displacement switch.

The pen drops off the shelf at a safe distance below the expected pressure altitude and ballast then flows until the pressure pen reaches the insulating section of the commutator. In order to prevent the overshoot mentioned as one undesirable feature of the automatic ballast system, the high pressure end of the insulator may correspond to the expected maximum altitude of the balloon, any loss of lift due to impurities or escape of lifting gas will cause the balloon to level off at a ceiling within the ballast-dropping range. Continued ballast dropping will result in the rise of the balloon. Thus, an over-estimation of the ceiling is not as critical as in the case of the previous system.

(3) Rate-of-Ascent Switch

With the displacement-switch control just described there remain the problems of ballast waste and balloon oscillation resulting from discharge of ballast during rises of the balloon after a descent has been checked. To eliminate this, a ballast-control switch acting on the rate of rise of the balloon is put in series with the displacement switch to close the ballast flow circuit only when the balloon is coming down or floating below pressure altitude. When it is rising, no ballast flow is permitted. This "rate-switch" is seen in Figure 12.

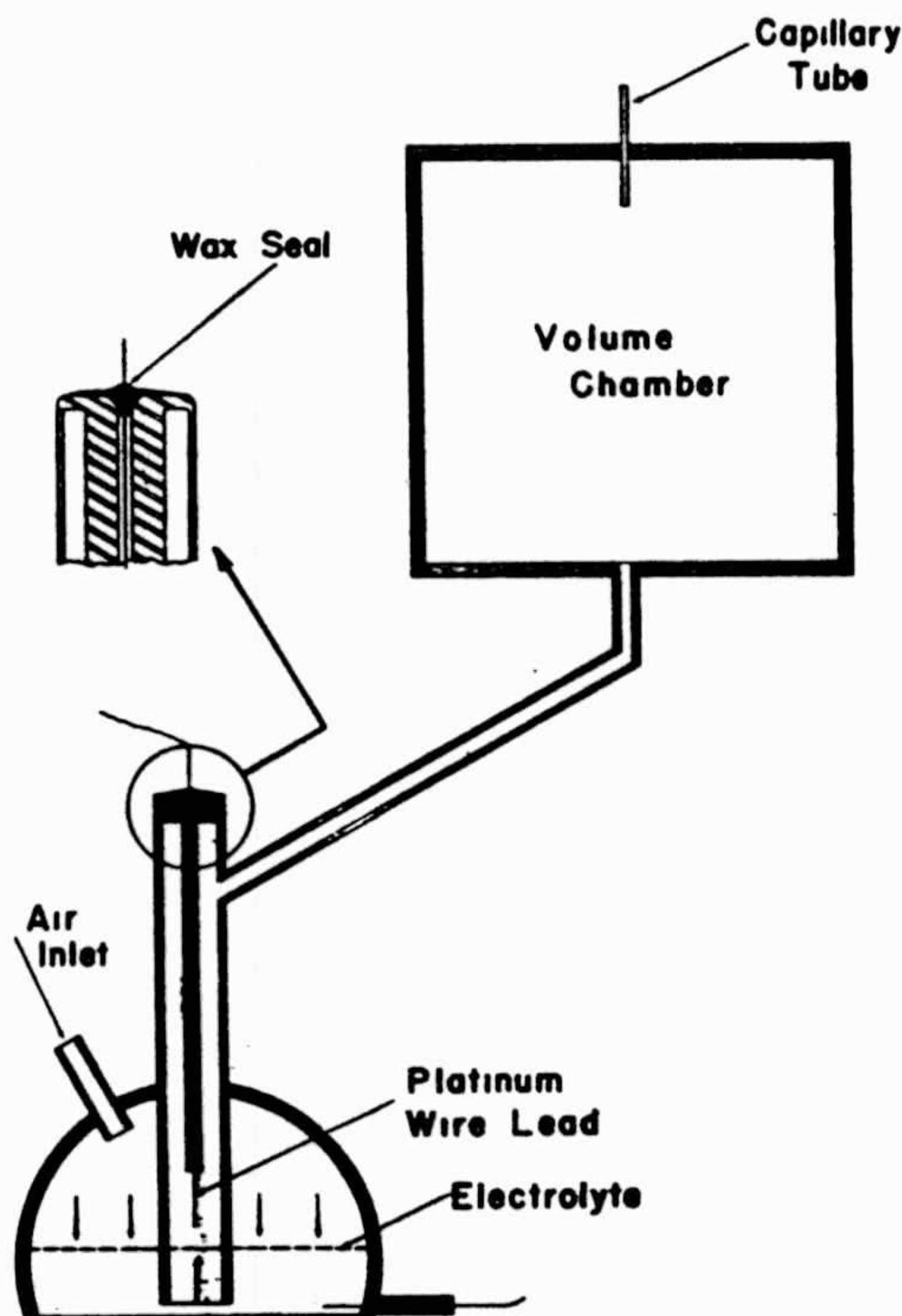


Figure 12. Rate-of-ascent switch.

A glass flask is open to atmospheric pressure through a fine capillary tube. With various rates of change of pressure, various differential pressures exist between the air in the flask and the outside air. This pressure difference controls the level of liquid in a manometer switch, filled with 24% hydrochloric acid. When the internal pressure is 0.2 mb more than the ambient pressure, the switch opens and ballast flow is stopped even though the balloon may be below the floating level. (The switch is set so that a rate of change of .1 mb/minute acting for three or more minutes will open the switch.) By thus restricting flow when the balloon is rising, balloon oscillations are minimized and ballast is conserved. A sketch of this operation is shown as Figure 13.

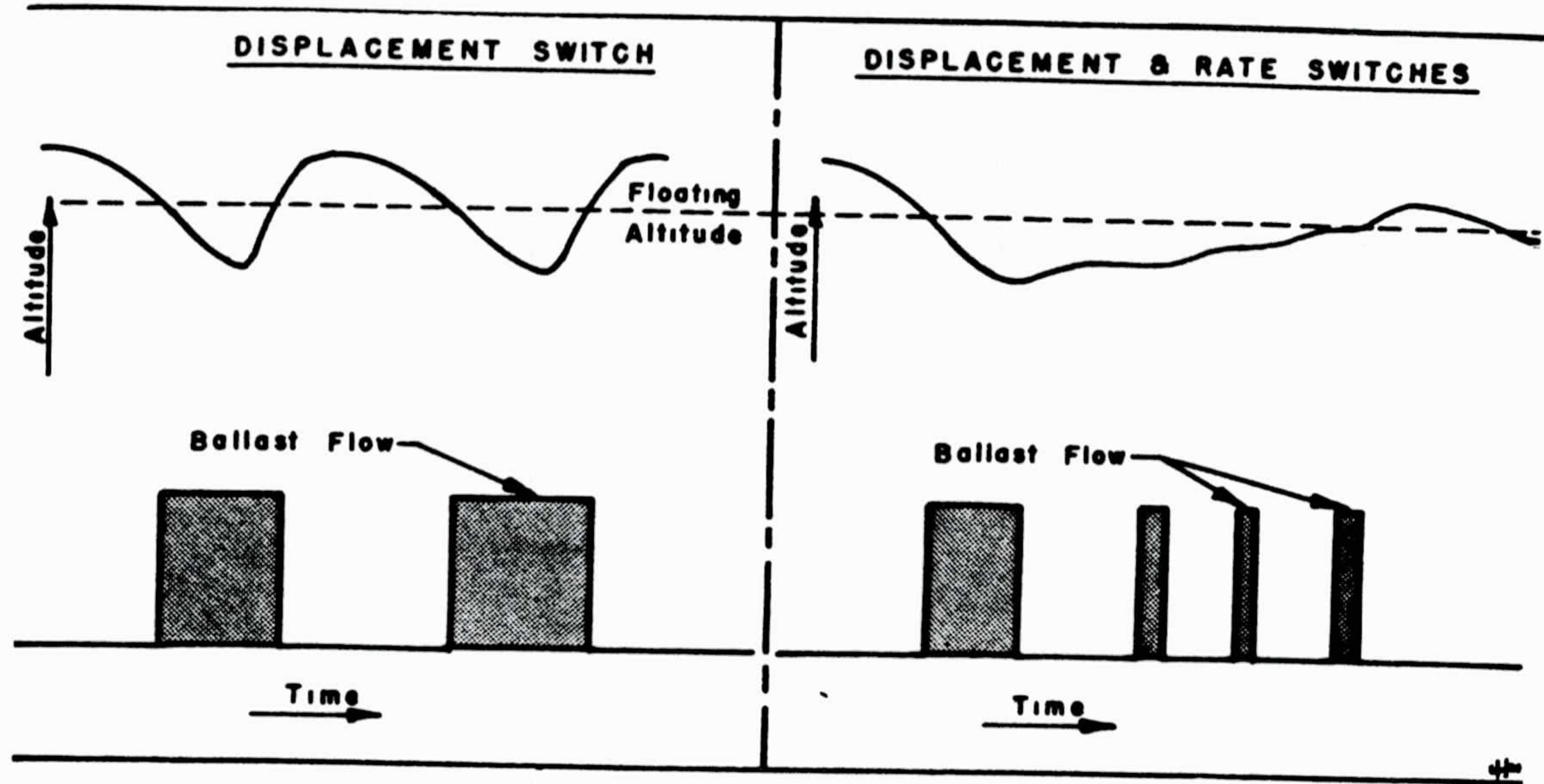
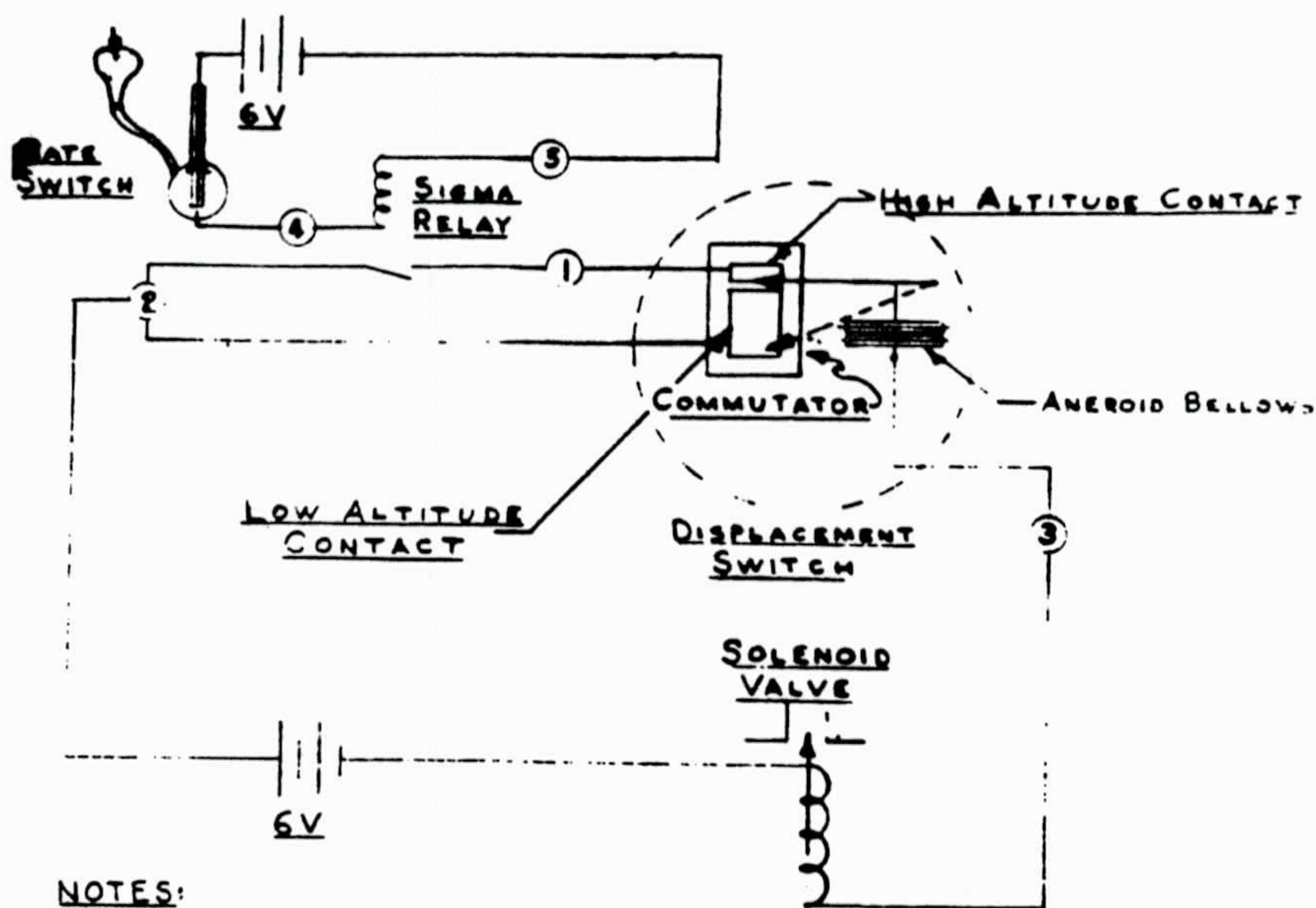



Figure 13. Height-time curve, showing ballast control action.

Since the rate switch is much more delicate than the displacement switch, safety considerations have caused the combined control to be supplemented by a pure displacement switch control. In this, the conducting segment of the pressure modulator is divided, and only a limited pressure height range (set for desired floating level) is controlled by both switches in series. If the rate switch is damaged at launching (by spilling some of its electrolyte, for instance) or in flight (perhaps by evaporation of the electrolyte) and the balloon descends, simple displacement control becomes effect when the high pressure (lower altitude) segment of the conductor is touched by the pres-

sure pen. The switch circuit is seen in Figure 14.

NOTES:

BATT. PACK IN TRANSMITTER Box
SIGMA SENSITIVE TYPE 5F RELAY- COIL
RESISTANCE- 16000 OHMS
DISPLACEMENT SWITCH- ED48-107
RATE SWITCH- ED48-115
SOLENOID VALVE- ED48-110
USE 4FH-6 V LITHIUM CHLORIDE BATTERIES (BURGESS)
FOR DETAILS OF DISPLACEMENT SW. SEE ED48-126

Figure 14. Circuit for ballast control with combined displacement and rate-of-ascent switches.

Figure 15 is a theoretical height-time curve, showing when ballast would be dropped using such a control and the resulting balloon behavior. During ascent the pressure pen is kept off the commutator bar until Point 1 where it falls onto the low-altitude conducting segment. (The shelf has been set so that the pen will fall onto the low-altitude segment in order that a ballast signal will be received for a short period of time, indicating that the system is working properly. The balloon rises and ballast flows until the pressure pen reaches Point 2, the beginning of the region where both switches in series control the ballast. As long as the balloon continues to rise, no flow occurs. Should the maximum altitude be above the control level, no ballast will flow until the balloon descends to that point. Then, with both controls operating, ballast will flow only on the descending and floating portions of the flight below control level. A second course is illustrated, wherein the rate-switch has failed. There the balloon descends to Point 2 and oscillates about this level, as a result

of displacement switch actions alone.

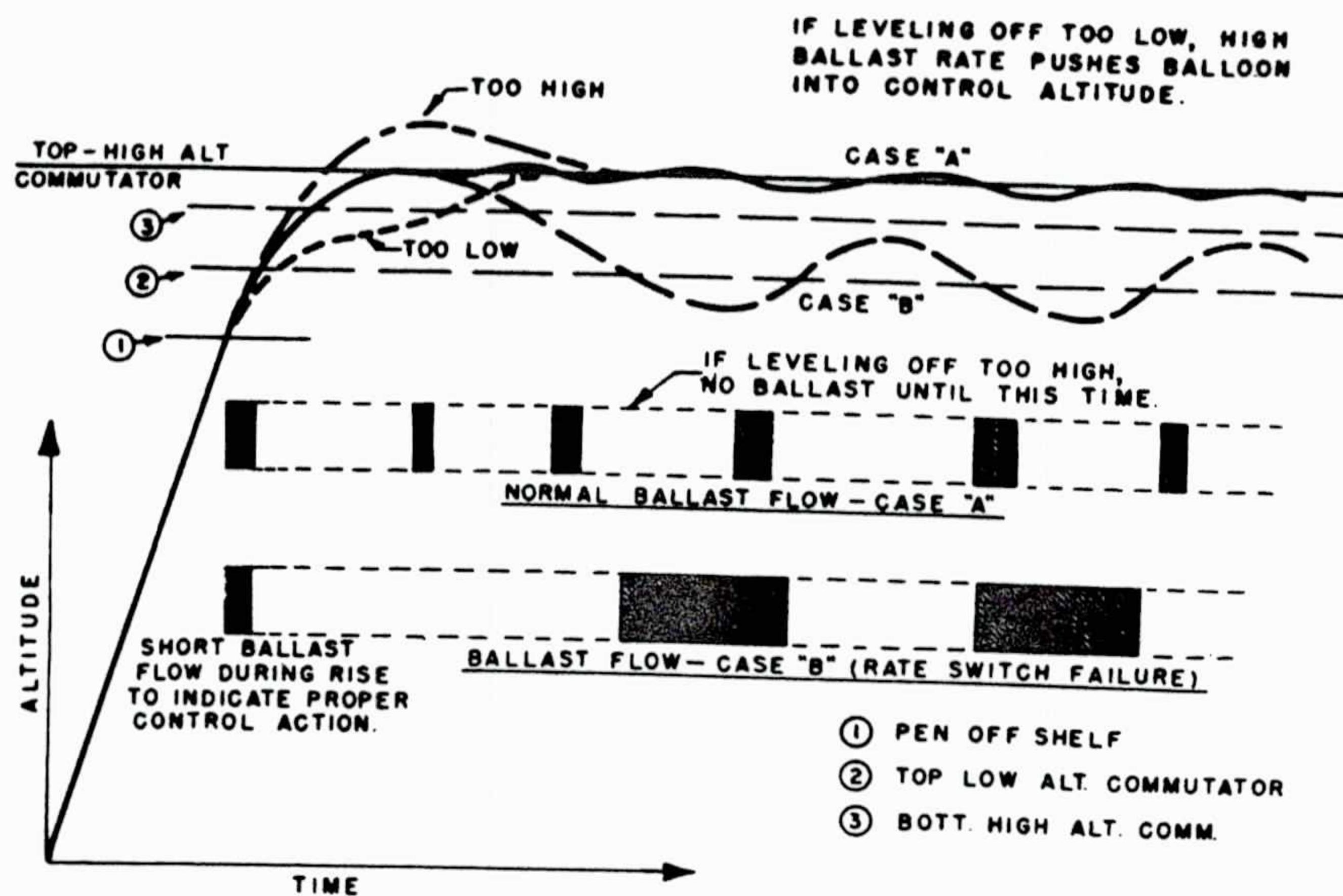


Figure 15. Theoretical height-time curve.

(4) Rate-of-Descent Switch

It may at times be desirable to control a balloon merely by a switch activated at any given rate of descent. This could be accomplished merely by "reversing" the rate-of-ascent switch. This type of control would prove to be quite difficult, however, for a constant level flight. One flight, No. 97, was made using a type of rate-of-descent switch as shown in Figure 16. In

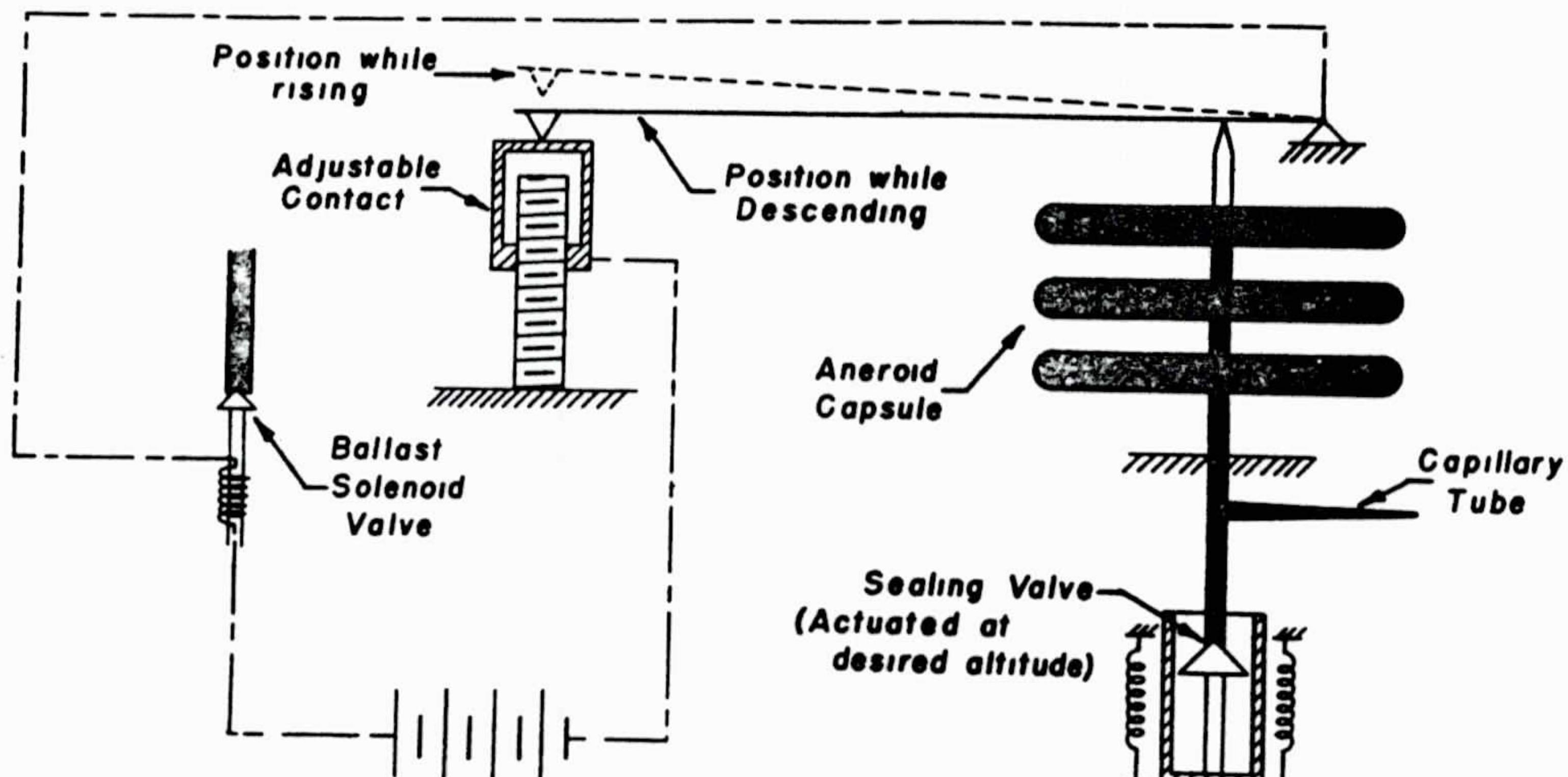


Figure 16. Rate-of-descent switch.

this switch a circuit is closed when the rate of descent exceeds 1/5 mb/minute, allowing ballast to flow. The record of Flight 97 indicates that good control was obtained for a four-hour period using this switch. However, the instrument is so delicate and susceptible to temperature effects that its use is not advised.

E. Flight Simulation

To make laboratory tests on the control equipment just described, a flight-simulation chamber has been built combining a bell jar and a temperature chamber. A drawing of the temperature chamber designed and built at New York University is shown in Figure 17. (Investi-

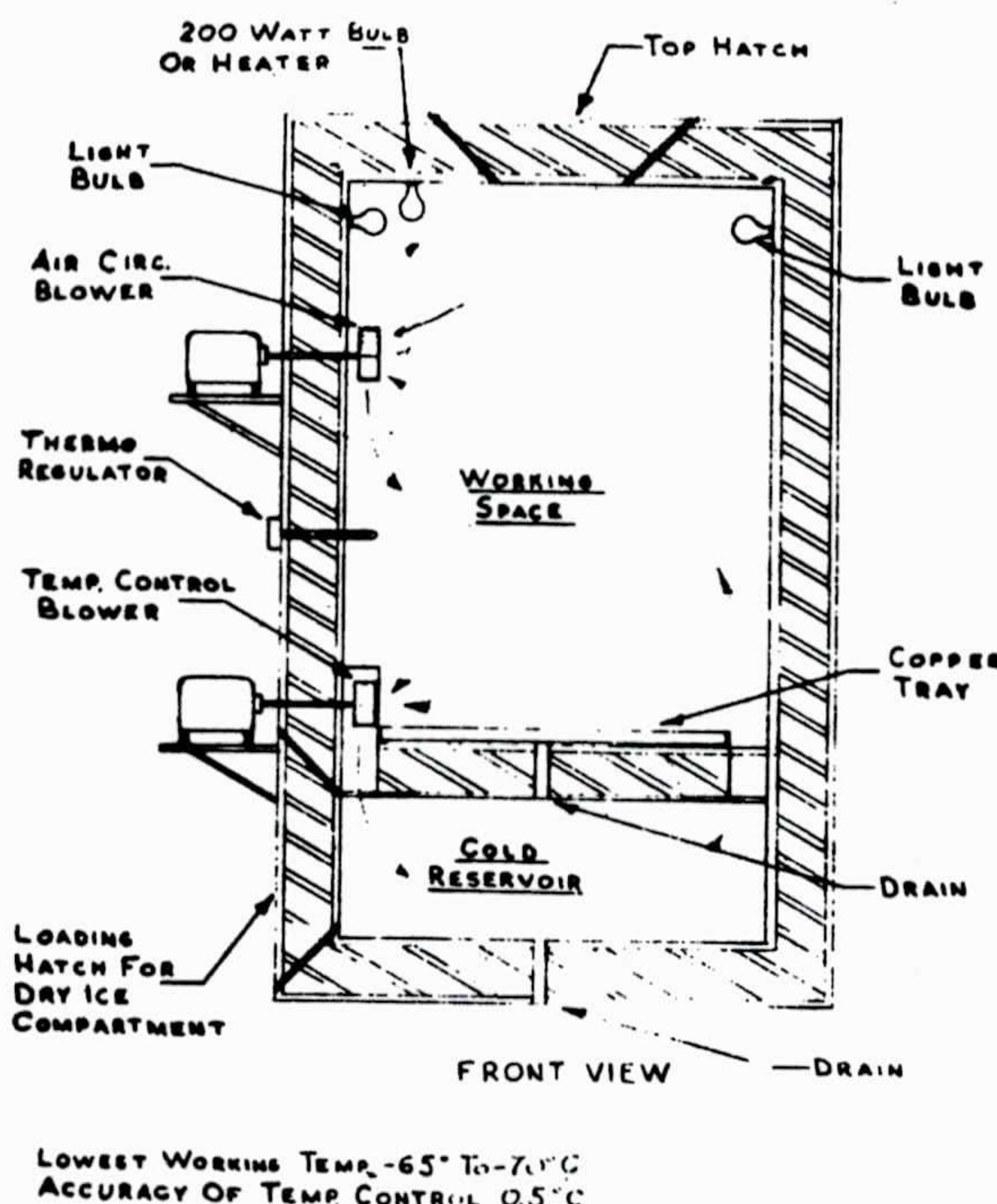
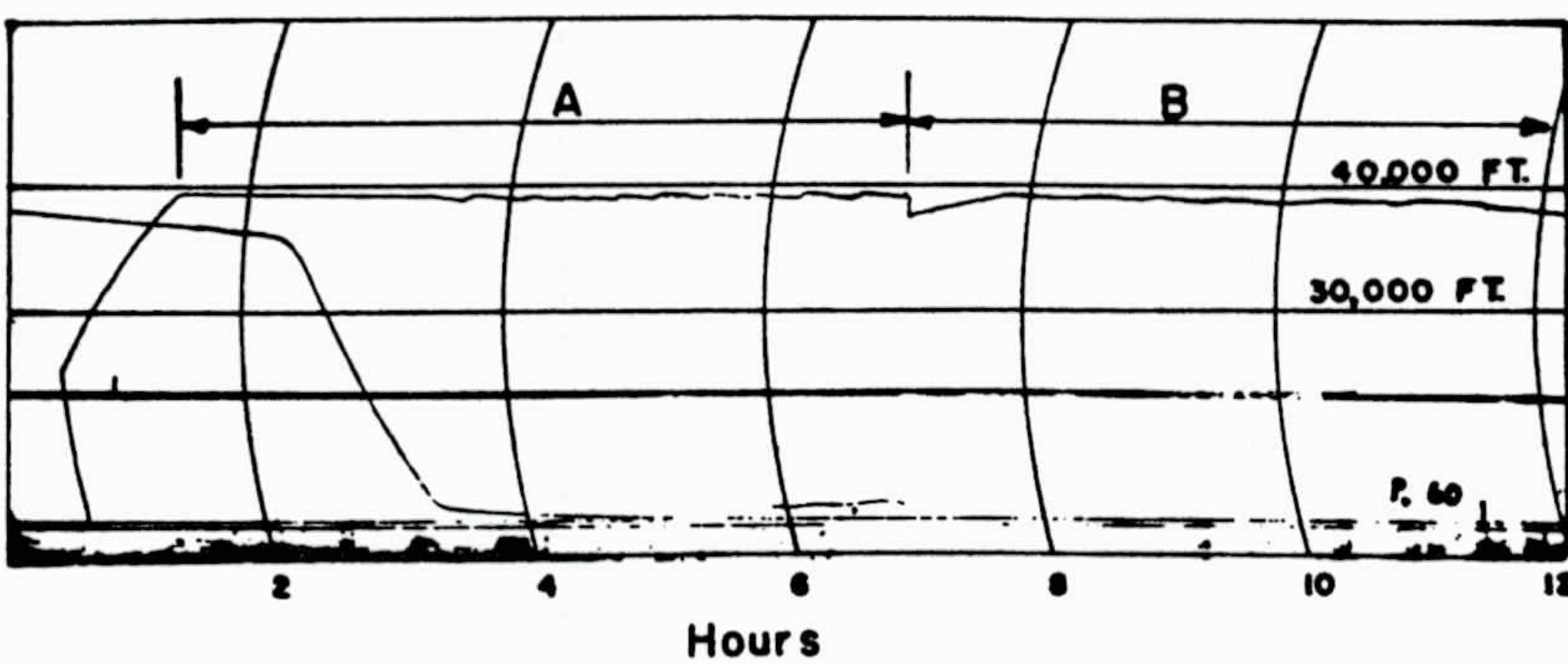


Figure 17. Temperature control chamber.

gation of commercially sold chambers showed that the cost of purchasing a temperature chamber of the size desired would be prohibitive.) First designs called for the use of a freon refrigerating system; however, use of dry ice as a coolant proved to be more advantageous. This chamber, with its automatic control, can hold temperatures as high as +100°F and as low as -90°F within 5° for a period of several hours. Dry ice consumption at -60°F is approximately 150 pounds for a 24-hour period.


It is possible, using a bell jar for flight-similitude studies, to arrange switches so that the vacuum pump is turned off and on at

the same time that ballast is normally required in flight. This system simulates the effect of rising and falling in the atmosphere and indicates the effectiveness of the controls which have been applied.

In order to simulate flight, it is necessary that three conditions be maintained within the system. The first is that a leak of air into the bell jar is permitted at a rate of pressure increase which has been observed during balloon descent. A large lag chamber is connected into the bell jar to supply the second condition which is a delay similar to that inherent in the control action on an actual balloon flight. It is necessary to properly adjust the volume of such a lag chamber to obtain the desired magnitude of control action.

A third requirement is that the response of the vacuum pump must correspond to that response which has been observed when a balloon system drops ballast. In order to measure this, the control mechanism has been allowed not only to switch the vacuum pump on and off but also to actuate the standard ballast-flow equipment. This system may be adjusted so that the amount of pressure change which a single period of pumping produces accurately represents the amount of ballast thrown off during flight.

The barogram shown in Figure 18 is an example of such a test. On this test the rate-of-ascent ballast switch was added to the displace-

Flight Similitude Record Of Pressure

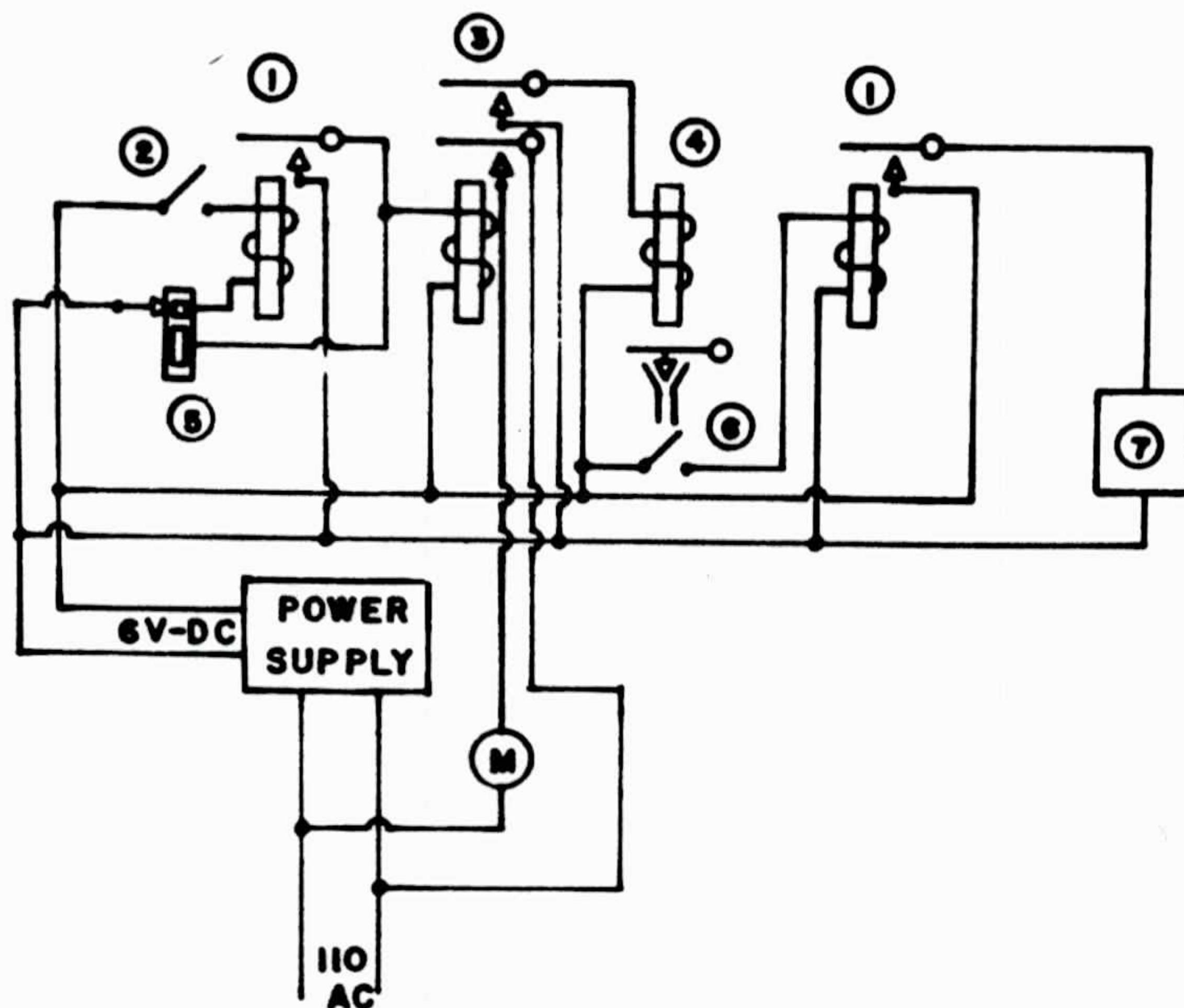

- A- Displacement Switch
Operating.
- B- Displ. & Rate Of Ascent
Switches Operating.

Figure 18. Sample barograph record.

ment switch after the latter had operated for a period of six hours. The combination of the two is seen to have effected a reduction in

the amplitude and frequency of oscillations induced by the servo system. In fact, under the influence of both controls, oscillation is almost undetectable.

As a consequence of such tests, it is possible to predict the type, size and frequency of oscillations which the servo-control equipment will introduce into the balloon flight. This is especially significant since it is known from flights on which no control equipment was included that oscillations do occur naturally within the atmosphere, apparently as a result of vertical cellular convection currents. By knowledge of the frequency of oscillation caused by a given control system it is possible to analyze oscillations and determine which are caused by control and which are atmospheric. The wiring diagram of the flight-similitude system is shown in Figure 19.

NOTES

- ① Sigma Relay Type 5F
- ② Rate Switch- ED 48-115
- ③ Heavy Duty Relay, Guardian Series 200dpst
- ④ Ballast Solenoid Valve- ED 49-2
- ⑤ Displacement Switch- ED 48-107
- ⑥ Auto Syphon
- ⑦ Counter
- ⑧ Pump Motor

Figure 19. Wiring diagram, flight-similitude system.

The vacuum system is shown in Figure 20.

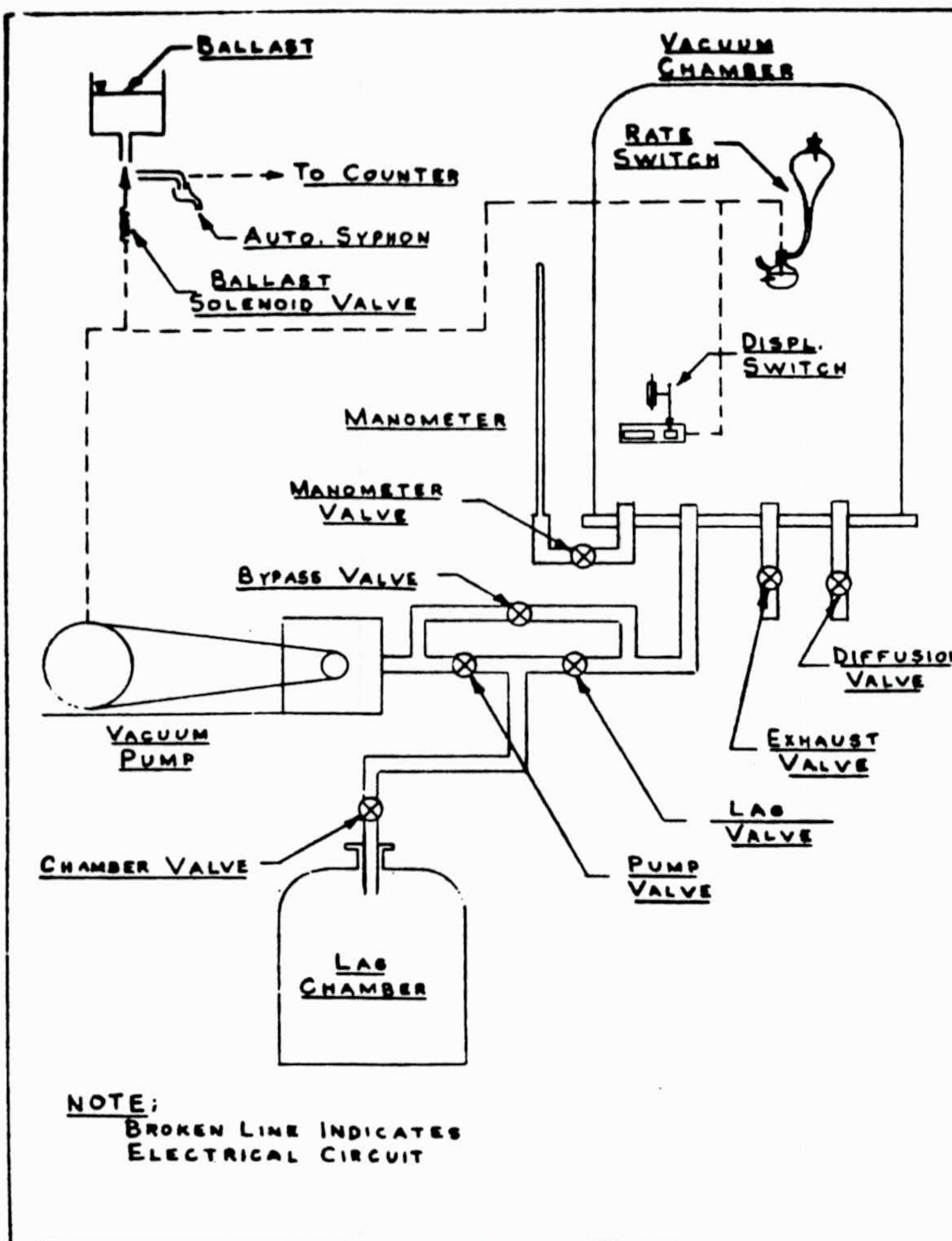


Figure 20. Physical layout, flight-similitude system.

This equipment has been used in testing instruments to be flown and also equipment which is used in the launching and preparation before release. For example, the Du Pont S64 squibs, which have been used in conjunction with the flight-termination switches and also for severing launching lines, were tested in this chamber and found to fail when subjected simultaneously to cold temperature (-50°C) and low pressures (10 millibars) although tests at either low temperature or low pressures alone produced no failures. As a result of these tests, a new squib, the S59, has been produced by Du Pont and is used in current flights. Other equipment which has been tested in the bell jar and the cold chamber includes the Lange barographs and the Olland-cycle pressure-measuring instruments.

F. Flight Termination Gear

The rate of descent when controlled balloons are falling after exhausting all ballast is sometimes as slow as 50 feet per minute. This means that several hours might be required to fall through the lanes of aircraft traffic, increasing considerably the hazard to aircraft (admittedly very small). To minimize this possibility, units have been added to the flight train to cause a rapid descent after the balloon system has descended to some critical value, say 20,000 feet. One such destruction system, using a flight-termination switch, is shown in Figure 21. It consists of a pressure-activated switch, triggered on descent only, an explosive charge used to sever

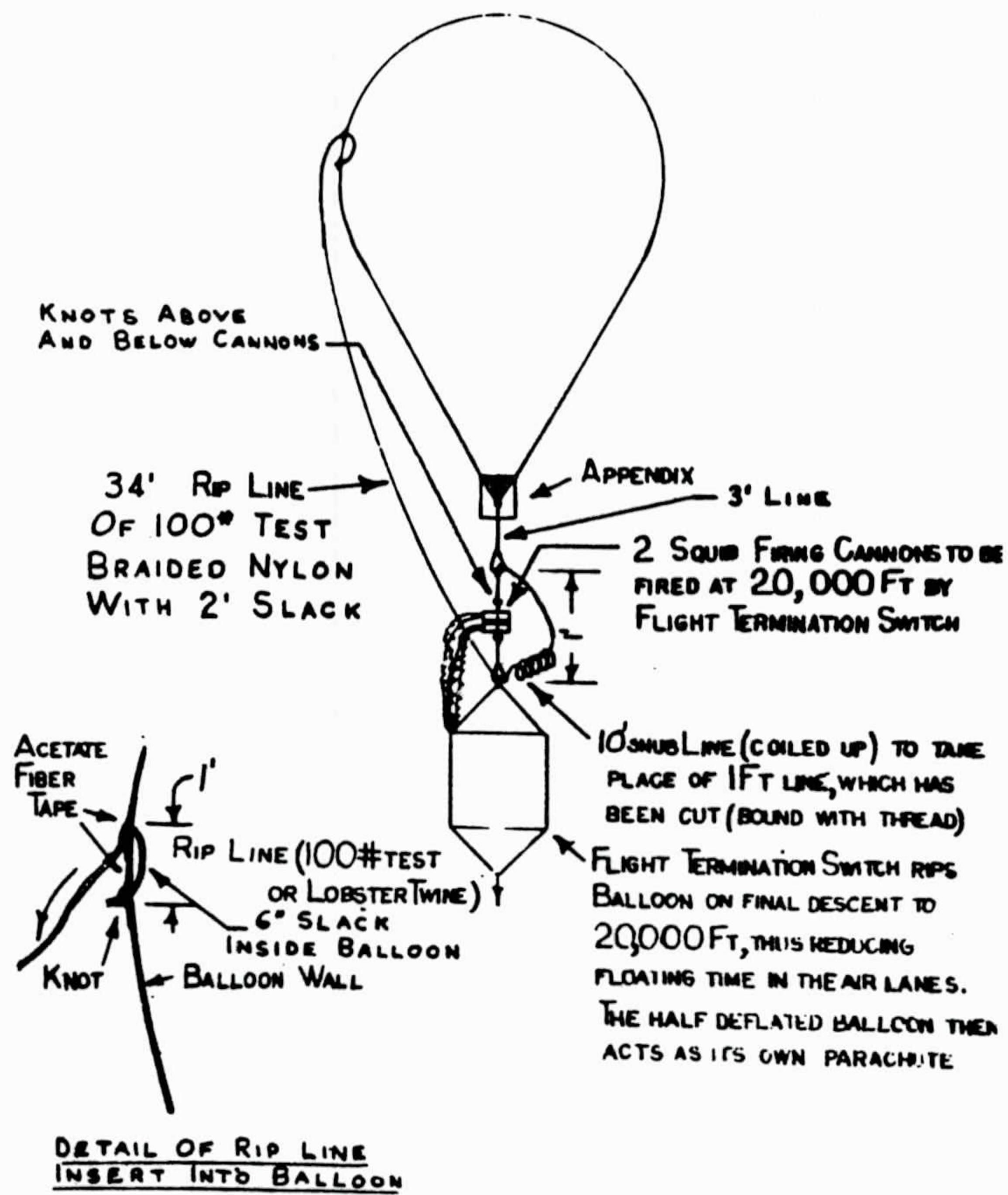


Figure 21. Flight termination equipment.

the main load line, a rip line attached to the balloon near the equator and a snub line which takes up the strain after the load has fallen a few feet.

When the contact is made, the load line is cut and the entire weight of the dependent equipment is used to pull out a section of the balloon wall. Through this rupture, the lifting gas can escape, and the balloon descends, using the upper portion as a parachute. The rate of descent has been observed to vary from 600 to 1500 feet per minute when this system is employed.

For some special applications it has been desirable to cause the balloon to descend after some predetermined time, instead of waiting for the descent to air traffic lanes. In these cases, a clockwork switch has been used instead of the pressure-activation unit. When docks are used they are kept free of lubricants which will freeze. The best results have been obtained from the use of a Dow Corning Silicone (DC 701) diluted with 30% kerosene. If this is not available, it is better to send up a clock without any lubrication. Given relatively loose mechanism (a cheap alarm clock) the differential expansion of parts which is encountered at low temperatures is apt to cause less trouble than does the congealing of standard lubricants.

IV. EQUATIONS AND THEORETICAL CONSIDERATIONS

Development of a controlled altitude balloon has led to investigation of many theoretical considerations applicable both directly and indirectly to the description of variables encountered in balloon control. Some of these relationships have been derived directly from standard hydrodynamic or thermodynamic principles; others come from an empirical study of results of laboratory tests and actual balloon flights. In this section we will investigate these theoretical considerations and endeavor to correlate them with actual flight results. A more simple investigation of the equations necessary for the launching and tracking of a controlled altitude balloon is contained in Part II of this report, "Operations."

We shall first consider the relationships which aid in evaluating the elementary characteristics of non-extensible balloon flight and those which are helpful in carrying out inflation and launching operations of such balloons. Next, we shall discuss more complex considerations involved in balloon flights.

A. Floating Altitude and Altitude Sensitivity

To determine the altitude at which a non-extensible balloon will float we must consider the weight of the balloon system, the volume of the balloon, and the densities of the lifting gas and the air. [If the lifting gas is 98% helium (molecular weight 4.50 lb./lb. mol), the lift of a unit of gas will be 24.4 lb./lb. mol. Similarly, if 98% hydrogen were the lifting gas, the lift would be 26.6 lb./lb. mol.] By using these three basic parameters, we can obtain an expression for the molar volume at which the balloon will float:

$$(1) \quad MV = \frac{\text{Balloon Volume} \times \text{Gas Lift}}{\text{Gross Load}}$$

[It may be noted from this equation that a balloon can float at molar volumes less than that computed for maximum balloon volume (i.e., when it is not full). However, under these conditions the balloon would be in neutral equilibrium, since any vertical force would cause it to rise or fall until a force in the opposite direction stopped it. This is also the case with floating extensible balloons.]

To convert from molar volume to equivalent altitude we must know the pressure-temperature distribution of the atmosphere in which the balloon will float. Since it is difficult to obtain an accurate distribution for each flight, the atmospheric model as drawn up by NACA standards has been used. In general the error obtained in using the NACA standard is not great, but if greater refinement is desired, data obtained from averaged radiosonde observations over a given launching site can be used.

From such knowledge of the distribution of pressure and temperature, we may plot a curve of molar volume vs. altitude by use of the following equation:

$$(2) \quad MV_z = 359 \frac{\text{ft}^3}{\text{lb mol}} \times \frac{T_z}{273^\circ \text{K}} \times \frac{1013.3 \text{ mb}}{P_z} \frac{\text{ft}^3}{\text{lb mol}}$$

By use of such a plot we easily find the floating altitude of a full non-extensible balloon by use of equation (1) to find molar volume, and then of the plot of equation (2) to find altitude.

The two equations have been combined and graphed in the form of an altitude vs. gross load chart with helium as the lifting gas for various balloon sizes and various release sites in the "Operations" section of this technical report (Part II, page 108).

For the NACA standard atmosphere we may derive an equation for altitude sensitivity by use of the molar volume-altitude relationship. This is most easily done by plotting molar volume vs. altitude on semi-logarithmic paper, since the curve of molar volume vs. altitude from 40,000 to 105,000 feet (where a constant lapse rate of zero is assumed) is approximately a straight line on semi-log paper. The general form of the equation for this portion of the atmosphere is $y = ae^{bz}$ where y is the molar volume and z the altitude.

It is possible to determine empirically the constants a and b . For example, using the molar volume at 50,000 feet, we find from

* 359 ft^3 = Molar volume of air at standard conditions (273°K , 1 atm. pressure)

the equation $2500 \text{ ft.}^3/\text{lb. mol} = ae^{50b}$ where 50 is the expression for altitude in thousands of feet. Similarly, at 70,000 feet, $6450 = ae^{70b}$, and by solving to eliminate a, we find $2.58 = e^{20b}$ or $20b = .95$, and the constant b is equal to .0475. Thus, the equation may be written:

$$(3) \quad y = ae^{.0475 z}$$

y was originally defined as the molar volume, equal (for 98% helium) to:

$$\frac{\text{Balloon Volume} \times 24.4}{\text{Gross Load}} = \frac{K}{W}$$

In turn, $\frac{K}{W} = ae^{.0475 z}$, where z is the expression for altitude in thousands of feet. From this relationship, we may solve for W, the gross load.

$$(4) \quad W = \frac{K}{a} e^{-.0475 z}$$

$$(5) \quad \ln\left(\frac{Wa}{K}\right) = -.0475 z$$

or:

$$(6) \quad \ln W + \ln \frac{a}{K} = -.0475 z$$

Differentiating with respect to W:

$$(7) \quad \frac{dz}{dW} = -\frac{21.052}{W} \frac{\text{ft}}{\text{lb}} \quad \text{where } W \text{ is gross load in lb.}$$

We see that the value of the constant a is unimportant here, and the expression is independent of balloon volume, as long as it does not vary with time. Included is the assumption that over a short period of time buoyancy of lifting gas does not change.

Thus, we have an expression for A, the altitude sensitivity, which is valid between 40,000 and 105,000 feet. Similarly, it is possible to evaluate altitude sensitivity for operation between 0 and 30,000 feet. A in this range is equal to $\frac{31,400}{W} \text{ ft./lb.}$

A plot of altitude sensitivity against load is shown on page 109 of the "Operations" section (Part II of this technical report).

We may use this equation to approximate the rise of a full balloon system when controlled by overcompensated constant ballast flow:

$$(8) \quad \frac{dz}{dt} = \frac{dW}{dt} \times A$$

where z is the balloon ceiling, t is time, and W is total weight of the balloon system.

B. Rate of Rise

The equation of Clarke and Korff:

$$(1) \quad \frac{dz}{dt} = 272 \frac{F^{1/2}}{G^{1/3}} \frac{\text{cm}}{\text{sec}}$$

has been used to obtain the relationship between rate of rise and free lift (or excess buoyancy) for a balloon system of any given weight. For practical use, the equation has been modified to:

$$(2) \quad \frac{dz}{dt} = 1486 \frac{F^{1/2}}{G^{1/3}}$$
 where F is free lift in pounds and G is gross lift in pounds.

Although this equation was derived for use with extensible spherical balloons, it predicts closely the performance of non-extensible balloons while they are rising to floating level. An average value for the constant in equation (2) from actual flights is 1600 ft./min(lb.)^{1/2}

The deviation from this relationship, evidenced in several flights, may be due to several variations from the assumptions upon which the equation is based. This deviation has in general been an increase of rate of rise of from 0 to 25% at higher altitudes.

To explain this increase, let us first investigate the changes which may occur in the free lift. If any gas leaves the balloon because of leakage through the balloon or the appendix, the free lift will be reduced and the rate of rise will decrease (as it does after the balloon is full and "levels off"). Therefore, this variation may be ruled out when considering rise before the balloon becomes full.

Free lift will vary with changes of temperature of the lifting gas with respect to the free-air temperature. A change of this sort can be caused by acquisition of superheat of the lifting gas, or by temperature decrease or increase caused by adiabatic expansion or compression of the lifting gas. (These items will be discussed later in this report.) Actual temperature measurements during rising portions of flights indicate that there is no appreciable tempera-

ture difference between the lifting gas and free air. Evidently the effect of ventilation as the balloon moves through the air causes the lifting gas to remain at a temperature approximating that of the air, and the increase of lift due to temperature variation is small in magnitude.

Since changes in the value of free lift appear incapable of causing any appreciable increase in rate of rise, other possible variations such as a change of the drag, or fluid friction, effect must be considered.

The equation of Korff is based upon the assumption that the effect of the change in Reynolds number and the change in size are of equal magnitude, but in opposite directions. Therefore, these variables are eliminated to obtain the simple engineering formula of Korff. With a non-extensible balloon, however, the change of drag effect is probably less than the effect of change of Reynolds number. Therefore, it is likely that the rate of rise would increase with altitude. The change in drag effect may be realized by a decrease of relative size of the flabby, unfilled portion of the balloon. Thus there will be a decrease of the drag caused by flow of air past this flabby portion as the shape of the balloon changes; the result will be an increase in the rate of rise of the system.

C. Superheat and Its Effects

The effect of the heating of lifting gas by the sun's rays has long been of interest to those using balloons for atmospheric investigation. In cosmic-ray studies using freely extensible balloons, this heating effect was used to advantage in extending the length of flights. These flights were often released at night using the heat added at sunrise to replenish lift lost during the night by diffusion and leakage.

In constant-level balloon work, using non-extensible balloons, the effect of superheat of the lifting gas is more often a disadvantage than an advantage. The disturbance of the flight is not great when the gas acquires this superheat but may be disastrous when the superheat is lost. It is at this time that a large amount of ballast is required to keep the balloon system afloat.

Let us investigate the effects of gain and loss of superheat on a full, non-extensible balloon. We shall try to explain these effects in terms of percentage loss or gain of lift of the balloon system by use of simplified engineering formulas. First, the general formulas:

$$(1) \text{ Lift: } L = V_b(d_a - d_g) \quad , \text{ where}$$

V_b = balloon volume

d_a, d_g = density of air and lifting gas, respectively

$$(2) \text{ Density: } d = \frac{p}{RT}$$

p, R, T = pressure, specific gas constant, and temperature of the air or lifting gas

$$(3) \text{ Let: } B = \frac{R_a}{R_g} \quad \left(= \frac{M_g}{M_a} \right)$$

At any two positions:

$$L_1 = V_1 (d_{a_1} - d_{g_1})$$

$$L_2 = V_2 (d_{a_2} - d_{g_2})$$

Investigating the gain of superheat, since there is no change of volume $V_1 = V_2$ and:

$$(4) \Delta L = L_2 - L_1 = V_1 (d_{a_2} - d_{a_1} - d_{g_2} + d_{g_1})$$

Assume now that the balloon carries no internal pressure and that the difference in lift does not cause the balloon system to pass through any appreciable atmospheric pressure difference (in the case where the balloon is floating at 40,000 ft. MSL a change of 1000 ft. would be only 9 mb, or a 5% change).

Therefore:

$$p_{a_1} = p_{a_2} = p_{g_1} = p_{g_2} = p$$

Assume also that initially the air and lifting gas are at the same temperature and that the air passes through no appreciable temperature change. Then:

$$T_{a_1} = T_{a_2} = T_{g_1} = T_1$$

Then, making use of our two assumptions and substituting equation (2) into equation (4), we have:

$$\Delta L = V_p \left(\frac{1}{R_a T_1} - \frac{1}{R_a T_1} - \frac{1}{R_g T_{g_2}} - \frac{1}{R_g T_1} \right)$$

$$= \frac{V_p}{R_g} \left(\frac{1}{T_1} - \frac{1}{T_{g_2}} \right)$$

and:

$$\frac{\Delta L}{L_1} = \frac{\frac{1}{R_g} \left(\frac{1}{T_1} - \frac{1}{T_{g_2}} \right)}{\frac{1}{T_1} \left(\frac{1}{R_a} - \frac{1}{R_g} \right)}$$

$$(5) \quad \frac{\Delta L}{L_1} = \frac{B}{1-B} \left(\frac{T_{g_2} - T_1}{T_{g_2}} \right)$$

or, for small temperature differences, we have:

$$(6) \quad \frac{\Delta L}{L} = \frac{B}{1-B} \left(\frac{\Delta T}{T} \right)$$

With increasing temperatures, there will be an unbalance in the direction of greater altitude. While climbing to a greater altitude the balloon will valve gas and come to equilibrium at a new level. Thus the effect of gain of superheat with a full non-extensible balloon will be a slight increase of altitude.

Investigating the case where an initial amount of superheat is lost:

$$(7) \quad \Delta L = V_2 (d_{a_2} - d_{g_2}) - V_1 (d_{a_1} - d_{g_1})$$

and since the balloon volume will decrease with cooling of the lifting gas:

$$V_1 = V_2 \frac{T_{g_2}}{T_{g_1}} \quad (\text{assuming constant } p)$$

Therefore, again making use of the assumptions that:

$$p_{a_1} = p_{a_2} = p_{g_1} = p_{g_2} = p$$

and:

$$T_{g_2} = T_{a_1} = T_{a_2} = T_2$$

Combining equation (2) and equation (7), we have:

$$\begin{aligned} \Delta L &= V_1 \left[\frac{T_2}{T_{g_1}} \left(\frac{p}{R_a T_2} - \frac{p}{R_g T_2} \right) - \left(\frac{p}{R_a T_2} - \frac{p}{R_g T_g} \right) \right] \\ &= V_1 \left(\frac{p}{R_a T_{g_1}} - \frac{p}{R_g T_{g_1}} - \frac{p}{R_a T_2} + \frac{p}{R_g T_g} \right) \end{aligned}$$

$$(8) \quad = \frac{pV_1}{R_a} \left(\frac{1}{T_{g_1}} - \frac{1}{T_2} \right)$$

Then:

$$\frac{\Delta L}{L_2} = \frac{\frac{1}{R_a} \left(\frac{1}{T_{g_1}} - \frac{1}{T_2} \right)}{\frac{1}{T_2} \left(\frac{1}{R_a} - \frac{1}{R_g} \right)}$$

(9)

$$= \frac{1}{1-B} \left(\frac{T_2 - T_{g_1}}{T_{g_1}} \right)$$

or for small temperature differences:

$$(10) \quad \frac{\Delta L}{L} = - \frac{1}{1-B} \left(\frac{\Delta T}{T} \right)$$

the negative sign indicating a loss of lift.

From this equation we may approximate the amount of ballast required to compensate for the loss of superheat of the lifting gas. It is apparent, then, that the amount of superheat gained or lost by a balloon's gas is of extreme importance to the control of the flight.

For this reason a transparent film has a definite advantage over a reflecting fabric. For example, aluminum-coated fabric balloons floating at 40,000 feet have exhibited lifting gas superheat in the neighborhood of 40°C.* Polyethylene balloons, on the other hand, show superheat of approximately 10°C under the same conditions.

Assuming a total weight of 30 kilograms in the balloon system, with helium as the lifting gas ($B \approx \frac{1}{7}$), the following compensation at sunset, or when superheat is lost, will be necessary:

Aluminized fabric:

$$\frac{\Delta L}{L} = \frac{1}{1-\frac{1}{7}} \left(\frac{40^\circ}{250^\circ} \right) = 18.7 \%$$

Polyethylene:

$$\frac{\Delta L}{L} = \frac{1}{1-\frac{1}{7}} \left(\frac{10^\circ}{250^\circ} \right) = 4.7 \%$$

*This will explain the rapid descent of flight with fabric balloons and will show the need for high rates of ballast flow at sunset with polyethylene balloon flights (see Part III, "Summary of Flights," of this report).

This relationship between loss of lift and loss of superheat is substantiated by analysis of Flight 94. From the rate of descent the unbalance (using the equation of Clarke and Korff, see page 33) is in the neighborhood of 5 kilograms. Although there was no temperature measurement on this flight, a previous flight of this type indicated a superheat of approximately 40°C. By equation (10), with a gross load of 52 kg., the unbalance caused by loss of all of this superheat would be 9.7 kg. It is believed that ventilation past the balloon during a low velocity descent before operation of the ballast mechanism caused loss of superheat. Since this loss caused greater descent, and thus more ventilation, superheat was lost. An enormous rate of ballast flow would have been required to check descent.

D. Adiabatic Lapse Rate

One of the causes of temperature difference between the lifting gas and free air during rise or descent of balloon systems is the difference in lapse rates of air and the lifting gas. The adiabatic lapse rate is that temperature change caused by adiabatic expansion or compression of a gas during ascent or descent through a given vertical distance. The actual lapse rate of the lifting gas is the adiabatic lapse rate plus the effects of conduction and radiation. The adiabatic lapse rate is defined as:

$$(1) \quad LR = \frac{Ag}{C_p}$$

where:

$$A = 2.39 \times 10^{-8} \text{ cal/erg}$$

C_p = specific heat at constant pressure

g = acceleration caused by gravity

In the metric system for helium, ($C_p = 1.25 \frac{\text{cal}}{\text{°C/gm}}$):

$$LR = -\frac{980 \times 2.39 \times 10^{-8}}{1.25} = -1.87 \text{ °C/km}$$

or:

$$LR = -0.57 \text{ °C/1000 ft}$$

The adiabatic lapse rate for air, ($C_p = 0.239 \frac{\text{cal}}{\text{°C/gm}}$):

$$LR = -\frac{980 \times 2.39 \times 10^{-8}}{0.239} = -9.8 \text{ °C/km}$$

$$LR = -2.98 \text{ °C/1000 ft}$$

The actual atmospheric distribution, however, does not indicate an adiabatic lapse rate for air but rather a lapse rate which varies with altitude. For the troposphere the lapse rate of the atmosphere averages $-1.98^{\circ}\text{C}/1000 \text{ ft}$. It may be shown then that in the troposphere a rising balloon will get warm with respect to the air (neglecting ventilation and radiation effects) at a rate of $1.98 - .57 = 1.41^{\circ}\text{C}/1000 \text{ ft}$. In the tropopause the lapse rate of the atmosphere is zero. Thus the lifting gas (if helium) will cool relative to the air at a rate of $.57^{\circ}\text{C}/1000 \text{ ft}$.

Similarly, in the stratosphere, the lifting gas will cool relative to the air at a rate of $2.24 + .57 = 2.81^{\circ}\text{C}/1000 \text{ ft}$. This effect is plotted as Figure 22.

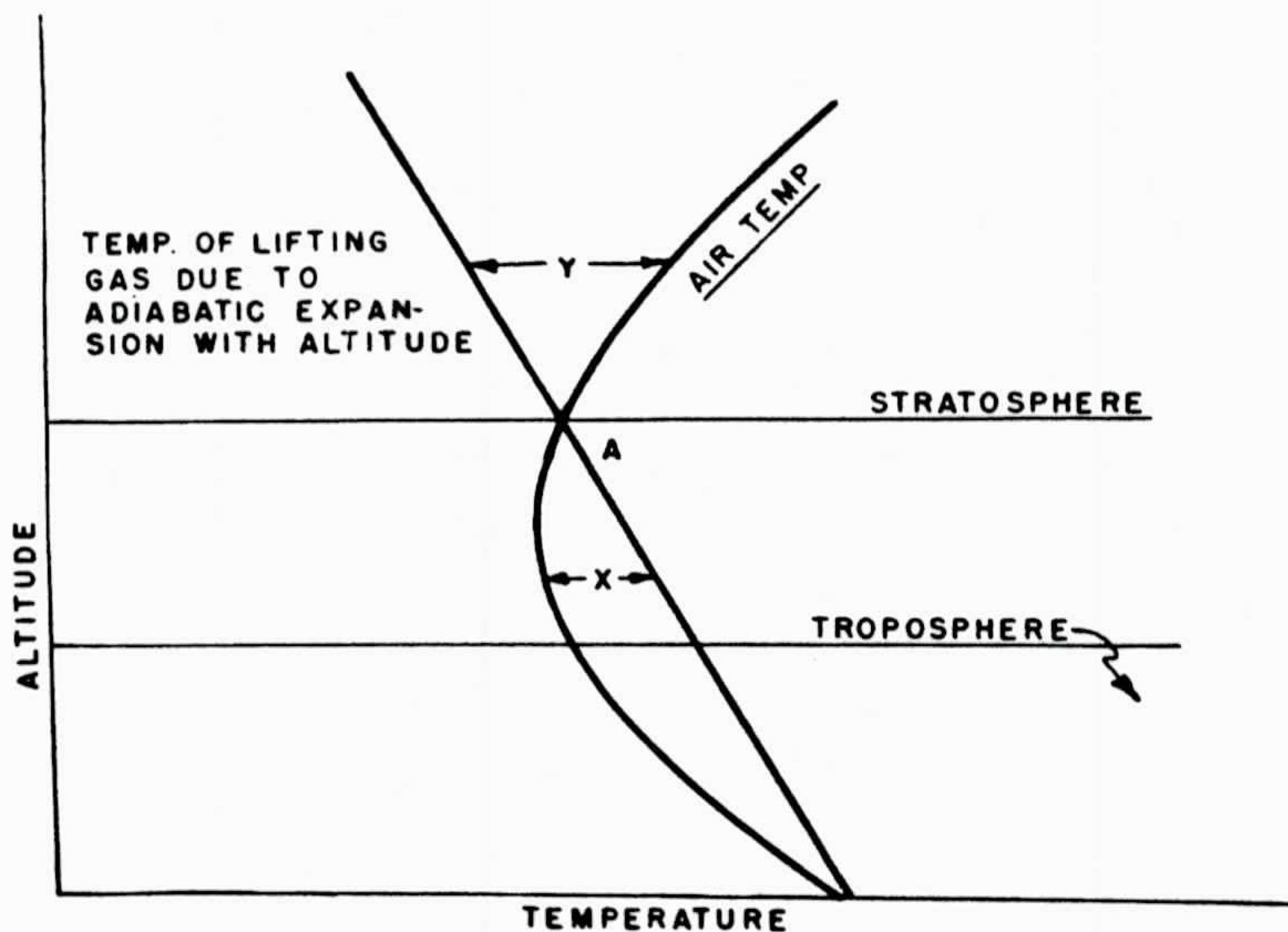


Figure 22. Lapse rate of air and helium.

Here, below point A, the lifting gas will be warmer than the air. Above point A, the lifting gas will be cooler than the air. The effect of this temperature difference on the lift (as shown in the previous section) is approximately

$$\Delta L = L \frac{\Delta T}{T} \frac{1}{(1-B)}$$

Thus, as a balloon system passes through point A, it will have less lift than at release. This effect has been observed on several flights, where a balloon system slowed down during ascent through a temperature inversion.

Since the effect of the sun in heating the lifting gas decreases the effect of different lapse rates, the effect is not as noticeable during the day as at night. At night the balloon system may pass through an inversion, lose its lift, and remain at an altitude much below its estimated floating altitude until warmed by the sun's rays at sunrise.

This effect adds to the stability of stratospheric balloon flights. If a system in equilibrium in the stratosphere were to lose lift and descend, the compression of the gas would cause an increase of the lifting gas temperature relative to the air temperature, causing a decrease in unbalance.

Similarly, an initial unbalance causing rise of the system would cause relative cooling of the lifting gas and thus again decrease the unbalance. Hence, the rate of rise or descent in the stratosphere will be limited by the rate of heat exchange due to conduction and radiation, which will counteract this effect of adiabatic heating or cooling.

Empirical evidence indicates that there is a great deal more stability in a stratospheric balloon system than in a similar system floating in the troposphere. This "adiabatic stability" is a principal reason for better performance of stratosphere flights.

E. Diffusion and Leakage of Lifting Gas

The lifting gas of a balloon can be lost by:

leakage through small holes in the fabric or film;
solution, migration and evaporation through fabric or film;
true molecular diffusion through openings, such as the appendix opening.

(1) Leakage

Volumetric flow, Q , of a gas through any given opening in the balloon surface may be evaluated as a function of the area of the opening, A ; the pressure head causing the flow, h ; and a coefficient of leakage, C_d .

$$(1) \quad Q = C_d A \sqrt{2gh} \quad \text{where } g \text{ is the acceleration due to gravity}$$

It would be difficult to evaluate the amount and area of holes in the balloon surface. Let us, then, compare the rate of leakage at any given altitude with leakage at sea level, rather than attempting to evaluate the leakage at a given altitude.

First we shall compare the rate of leakage of a full balloon at any given altitude with leakage of a full balloon at sea level. Let us assume that the area of any opening in the surface of the balloon does not vary with altitude and that the coefficient of leakage is constant. Thus:

$$(2) \quad Q \sim \sqrt{h} \quad \text{where } h \text{ is pressure head in feet of lifting gas}$$

However:

$$(3) \quad h = \frac{\Delta p}{d_g} \times 144$$

where Δp is the pressure difference across the opening (psi) and d_g is density of lifting gas (lb./ft.³). Combining equation (2) and equation (3):

(4)

$$Q \propto \sqrt{\frac{\Delta p}{d_g}}$$

The pressure difference across any given opening can be evaluated in terms of: height above a known point of zero pressure difference; rate of pressure change with altitude of the atmosphere (which, for any small section of altitude is assumed to be constant); and ratio of the densities of air and the lifting gas. Since the pressure difference across the appendix opening is zero this is our reference point for evaluating height. Figure 23 shows this pressure relationship in graphic form.

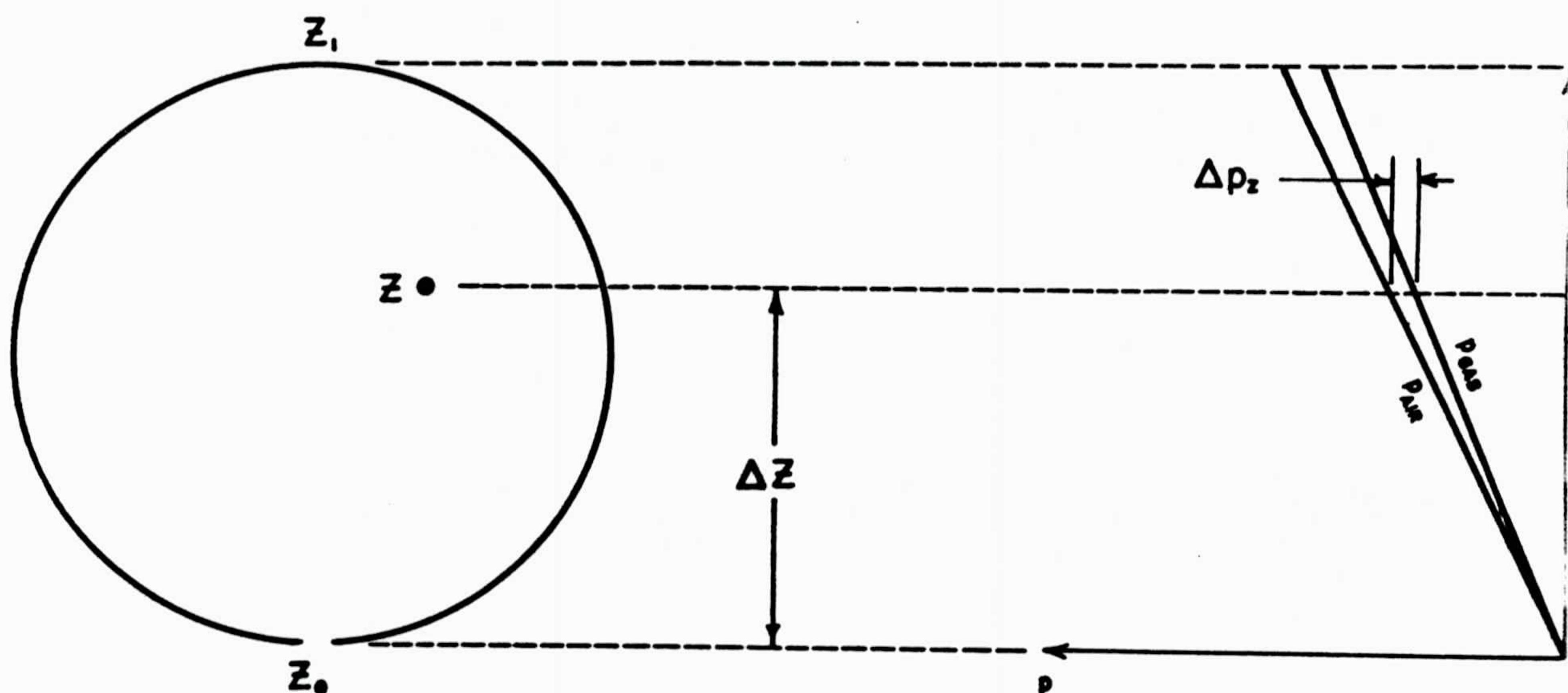


Figure 23. Pressure difference across balloon.

This relationship is expressed as:

$$(5) \quad \Delta p = \Delta z \left(\frac{dp}{dz} \right)_{air} (1 - B)$$

where $B = \frac{M_g}{M_a}$, M_g & M_a are molecular weights of lifting gas and air, respectively.

Since, for a full balloon, Δz is constant at any altitude, and B (for our discussion) is a constant:

$$(6) \quad Q \propto \sqrt{\frac{\left(\frac{dp}{dz} \right)_{air}}{d_g}}$$

The mass rate of flow is equal to the density of the lifting gas multiplied by the volumetric rate of flow:

$$(7) \quad L = Q d_g \propto \sqrt{\left(\frac{dp}{dz} \right)_{air} d_g}$$

Since the number of openings will not change with altitude, equation (7) expresses the relationship for mass rate of flow from a full balloon for any altitude. The leakage at any altitude may be expressed as a function of leakage at sea level:

$$\frac{L_z}{L_0} = \left(\frac{\left(\frac{dp}{dz} \right)_{air-z}}{\left(\frac{dp}{dz} \right)_{air-0}} \frac{d_{g_z}}{d_{g_0}} \right)^{\frac{1}{2}}$$

As an example, let us compare the leakage rates of a lifting gas through a full balloon at sea level, at 40,000 feet and at 100,000 feet.

Altitude	$(dp/dz)_{air}$	d_g
0	$\frac{1}{27}$	$\frac{1013}{288R}$
40,000	$\frac{1}{112}$	$\frac{188}{218R}$
100,000	$\frac{1}{1860}$	$\frac{10.9}{218R}$

Comparing rate of leakage at 40,000 feet with leakage at sea level:

$$\frac{L_{40}}{L_0} = \sqrt{\frac{27}{112} \cdot \frac{188}{1013} \cdot \frac{288}{218}} = 0.243$$

Comparing rate of leakage at 100,000 feet with leakage at sea level:

$$\frac{L_{100}}{L_0} = \sqrt{\frac{27}{1880} \cdot \frac{10.9}{1013} \cdot \frac{288}{218}} = 0.044$$

Therefore, if leakage of a full balloon at sea level is known, it is possible to compute theoretical leakage at any altitude. However, if it is not possible to completely inflate a balloon on the ground in order to make a sea level test (if lift would be great enough to rupture balloon or load lines), a method of comparing full balloon leakage with partially full balloon leakage must be found.

Let us assume that it is possible to obtain results of a leakage test for a balloon inflated to a volume $\frac{1}{x}$ of full balloon volume. Again starting with equation (1):

$$Q = C_d A \sqrt{2gh}$$

We see that in this case the total area of openings, A is not constant but is a function of volume. Therefore, we have:

$$(8) \quad Q \propto A \sqrt{h}$$

We have shown that:

$$h = \frac{\Delta p}{d_g} \cdot 144 = \frac{\Delta z \left(\frac{dp}{dz} \right)_{air} (1 - B)}{d_g} \cdot 144$$

Since we are comparing partially inflated balloon leakage at sea level with full balloon leakage at sea level the variable in the above expression is Δz . This is graphically illustrated in Figure 24.

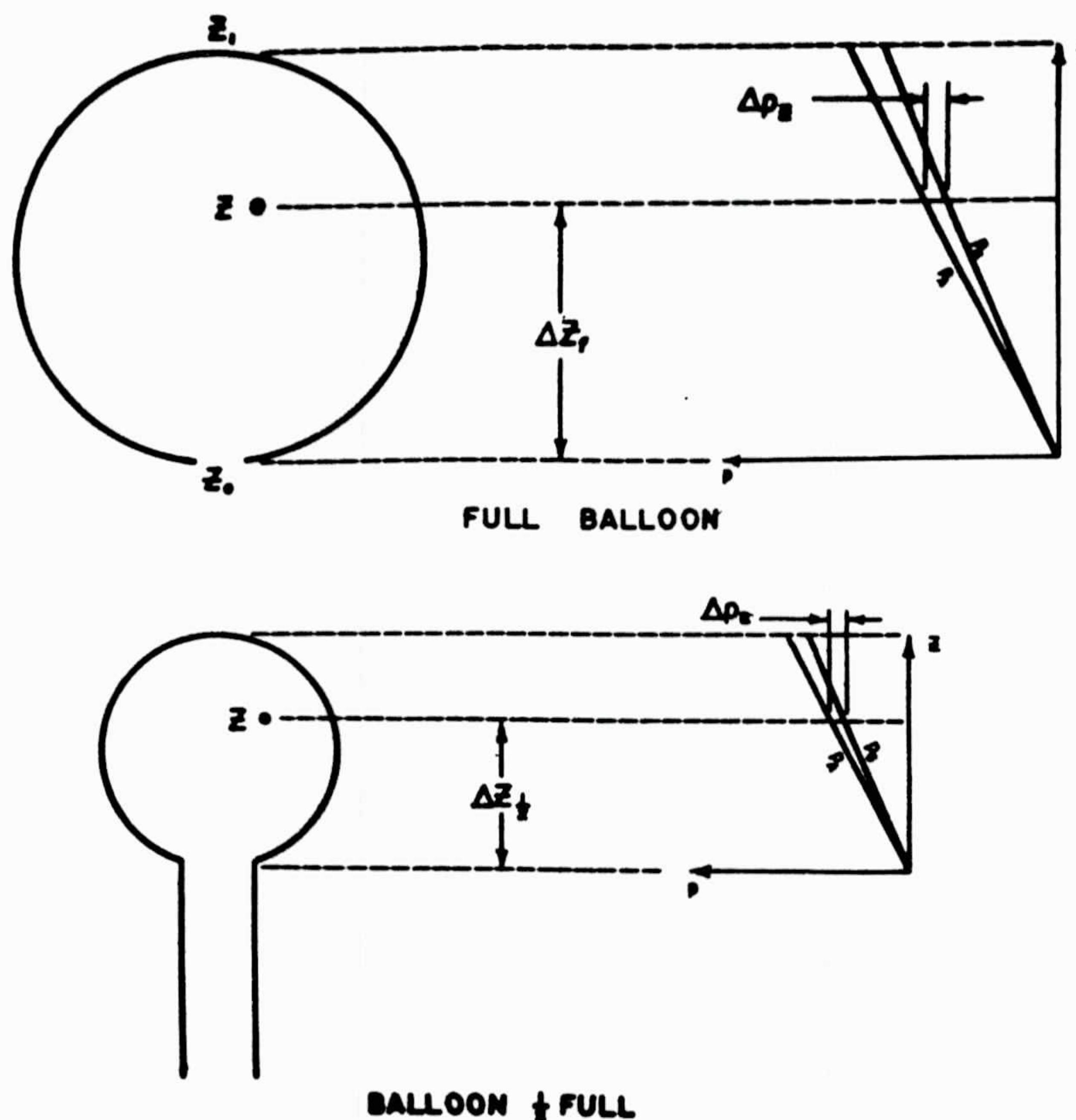


Figure 24. Comparison of pressure head across partially and fully inflated balloons.

Thus, the relationship is:

$$(9) \quad Q \propto A \sqrt{\Delta z}$$

$$(10) \quad Q \propto \sqrt{\frac{2}{3}} \sqrt{\sqrt{\frac{1}{3}}} \propto \sqrt{\frac{5}{6}}$$

Since the density of the lifting gas is constant, we may then express mass leakage as:

$$(11) \quad L \propto \sqrt{\frac{5}{6}}$$

And then, to compare leakage of a full balloon with leakage of a balloon $\frac{1}{x}$ full:

$$(12) \quad L_F = L_{\frac{1}{x}} (x)^{\frac{5}{6}}$$

Example: If a 20-foot diameter balloon $\frac{1}{10}$ full were tested at sea level and found to have a leakage rate of 50 gm/hr. the leakage rate of a full 20-foot balloon at sea level would be:

$$L_f = 50 \frac{\text{GM}}{\text{HR}} (10)^{\frac{5}{6}} = 340 \frac{\text{GM}}{\text{HR}}$$

The leakage of a full 70-foot diameter balloon at sea level in this case would be:

$$L_f = 50 \frac{\text{GM}}{\text{HR}} \left[10 \left(\frac{70}{20} \right)^3 \right]^{\frac{5}{6}} = 7820 \frac{\text{GM}}{\text{HR}}$$

Values for leakage at several different altitudes for 20-foot and 70-foot diameter balloons, assuming a leakage of 50 gm/hr. for a 20-foot balloon $\frac{1}{10}$ full at sea level are:

Altitude (MSL)	0	40,000 ft.	100,000 ft.
20-ft. diam.	340 gm/hr.	83.2 gm/hr.	15 gm/hr.
70-ft. diam.	7820 gm/hr.	1912 gm/hr.	345 gm/hr.

Another consideration is that relationship expressed by the kinetic theory of gases regarding gases at low pressures. The kinetic theory states that there is a molecular type of flow across a thin diaphragm through openings whose dimensions are of the order of the length of the mean free path of the molecules involved. Mass flow of the gas is then:

$$L = \Delta p \cdot A \sqrt{\frac{d_g}{2\pi}}$$

where:

Δp = is the pressure difference across the film

A = area of the opening

d_g = density of the gas in question

This relationship, however, becomes valid only at extremely low pressures, and when considering balloon systems at normal floating levels the more common fluid-flow relationship will control the rate of loss of lift through openings in the film. It would be of little use then to investigate further the leakage of gas through openings by means of the relationships involved in the kinetic theory.

(2) Solution, Migration and Evaporation through Film

A very slight amount of lift is lost through solution of the gas into the balloon film, migration through the film and evaporation into the atmosphere. The rate of this type of diffusion is a function of the characteristics of the lifting gas and the partial pressure involved. Since the lifting gas is assumed to be very nearly pure, the partial pressure is merely the pressure of the atmosphere in which the balloon is floating. This method of diffusion need not be considered when examining the loss of a balloon's lifting gas since it is of a low enough value to be insignificant as compared with the loss of gas by leakage through openings in the film.

Tests have indicated that this type of diffusion through .001" polyethylene has a value of approximately 4 liters/meter²/day. At sea level this is equivalent to 5.32 gm/hr. for a 20-foot diameter balloon. At 40,000 feet MSL the value would be approximately 1 gm/hr.

(3) Diffusion through Appendix

We have seen that there is no pressure difference across the open appendix of the balloon during floating. Therefore, the loss of lifting gas through this appendix (except when the balloon is rising and gas is being valved out of the appendix) can be only by true intermolecular diffusion of the gas into the atmosphere and air into the lifting gas. The expression for loss of lifting gas by diffusion is similar in form to the expression for transfer of heat through a given distance by conduction:

$$(13) \quad \frac{dN}{dt} = -D \frac{dN}{dz} dy dx$$

where:

$\frac{dN}{dt}$ = time rate of transfer of molecules of gas across the area $dy dx$ in direction \mathbf{z}

D = a coefficient of diffusion, dependent upon viscosity and density of the gas involved ($D = c \frac{\eta}{d}$)

$\frac{dN}{dz}$ = variation of molecular concentration with variation in direction \mathbf{z}

$dy dx$ = the differential term for area.

Then, since a molecule of lifting gas has a given weight, we may state that:

$$(14) \quad \frac{dw}{dt} = K \frac{dN}{dt}$$

where K is a constant.

We may state the relationship (13) in terms of rate of transfer and area of the opening, assuming $\frac{dN}{dz}$ to be constant across the opening:

$$(15) \quad \frac{dw}{dt} = -K_1 D \frac{dc}{dz} A$$

where:

$\frac{dw}{dt}$ = mass transfer of lifting gas

$\frac{dc}{dz}$ = variation of concentration of lifting gas
in direction \hat{z}

A = area of opening

In order, then, to determine the rate of loss of lifting gas by diffusion through the open appendix we must:

- (a) determine the relationship between the coefficient of diffusion, D , and altitude (or pressure and temperature)
- (b) determine the loss of lift by diffusion through the appendix at any convenient altitude (i.e. at the ground)
- (c) derive a relationship between loss at the ground and loss at any altitude.

However, determination of valid relationships to find diffusion through the appendix opening would require large scale laboratory testing and then tedious derivation of mathematical equations, a study in research in itself. It was deemed more practical to reduce or eliminate this type of loss of lift by reduction of the area of the opening by use of a relief valve system as explained in Part II of this report, "Operations," pp. 8-14.

F. Bursting Pressure and Appendix Considerations

Bursting pressure of a balloon can be computed from the equation:

$$(1) \quad \Delta p = \frac{4Sf}{D} \quad \text{for failure of the fabric or film,}$$

where:

Δp = bursting pressure (psi)

S_f = maximum allowable tensile stress of fabric or film (psi) (for safety $S_f = 1/2 S_{max}$ where S_{max} = maximum stress in tension)

t = thickness of fabric or film (in.)

D = balloon diameter (in.)

or:

$$(2) \quad \Delta p = \frac{4 S_s}{D} \quad \text{for failure of seams}$$

where:

S_s = maximum allowable tensile strength of seams (lb./in.)

D = balloon diameter (in.)

In general, a balloon should be manufactured so that any failure should occur first in the fabric or film and thus the tensile stress of this fabric or film will be the factor in determining bursting pressure.

Since the non-extensible balloons used in constant-level work by the N.Y.J. group have been of the open-appendix type, bursting due to excessive super-pressure has not been a problem. Strength of the balloon must be considered, however, from the standpoints of back pressure induced during rise of a full balloon and pressure distribution of the lifting gas itself inside of the balloon.

(1) Pressure Distribution of Lifting Gas

It was shown in the previous section that the pressure difference across any portion of the balloon surface may be equated:

$$(3) \quad \Delta p_z = \Delta z \frac{dp}{dz} (1-B)$$

A plot of Δp against Δz would then be a straight line at any given altitude. Maximum allowable balloon pressure--equation (1)--may be plotted as a function of Δz , rather than diameter for any given horizontal plane of the balloon surface, z . Using this relationship, cutting any horizontal plane $z-z$ across the balloon (Figure 25), the diameter of the

balloon at any point z may be expressed as:

$$(4) \quad d_z = 2 \left[\left(\frac{D}{2} \right)^2 - \left(\Delta z - \frac{D}{2} \right)^2 \right]^{1/2}$$

$$= 2 \left[D \Delta z - \Delta z^2 \right]^{1/2}$$

Therefore, maximum allowable balloon pressure at any plane $z-z$ will be:

$$(5) \quad \Delta p_z = \frac{4 S_f t}{2(D \Delta z - \Delta z^2)^{1/2}} \text{ psi}$$

Equation (5) may be plotted in terms of bursting pressure and Δz for any given diameter balloon. A straight line through the origin and tangent to the plot of Equation (5) will indicate the maximum allowable $(dp/dz)_{air} (I-B)$ for any given diameter balloon. Comparing the maximum allowable $(dp/dz)_{air}$ with a chart of altitude vs. pressure in the atmosphere will indicate the minimum altitude at which the balloon can be allowed to be full. From an altitude-buoyancy table for any given diameter balloon, the maximum allowable buoyancy, or maximum allowable gas inflation can be obtained.

Figure 26 is a plot of equations (3) and (5) for .001" polyethylene ($S_f = \frac{900}{2}$ psi) balloons of 20', 30' and 70' diameters.

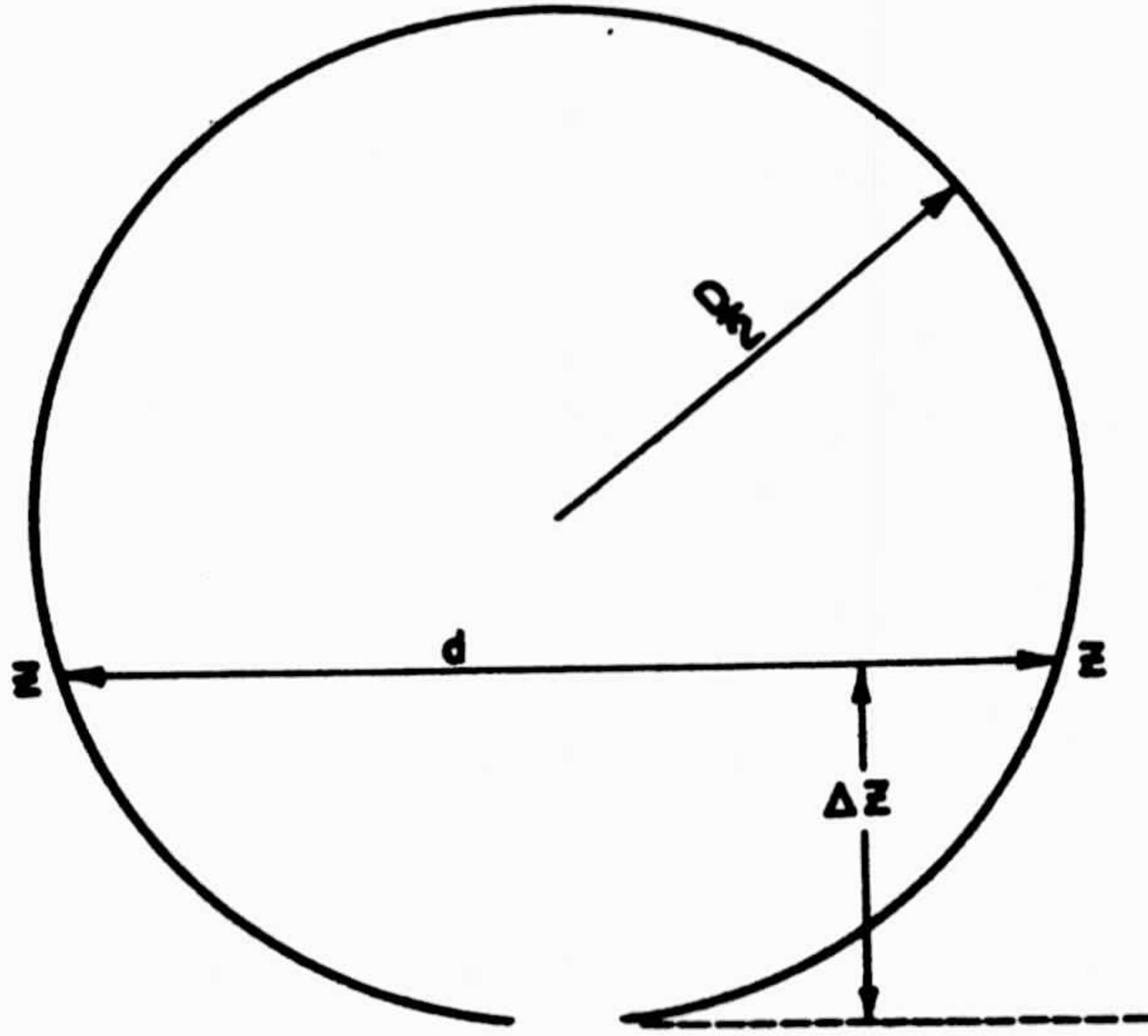


Fig. 25.

Relationship $d/\Delta z$, for balloon.

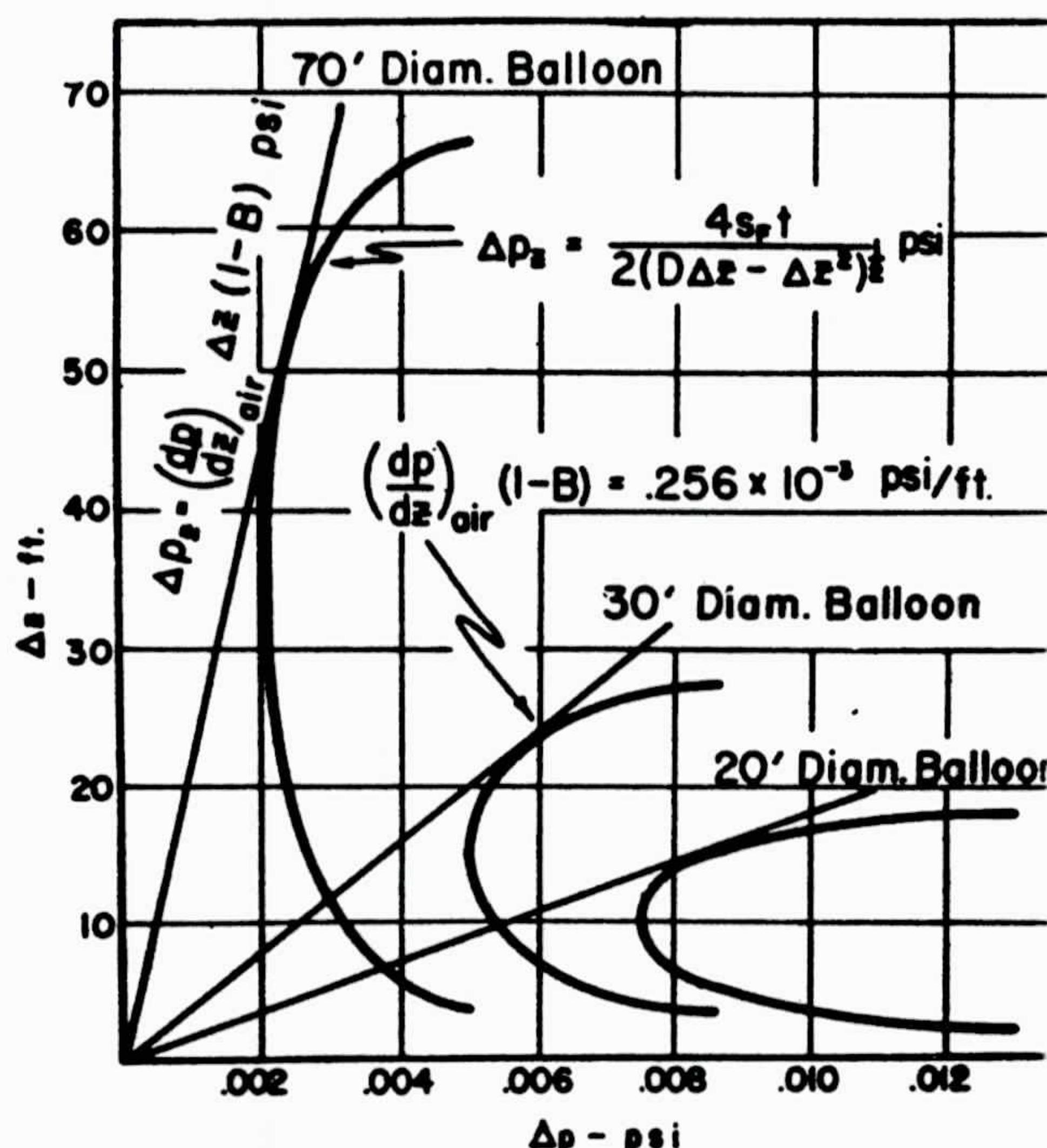


Fig. 26.

Graph of equations (3) and (5).

We see that the maximum allowable $(dp/dz)_a (1-B)$ for a 30' diameter, .001" thick polyethylene balloon is 256×10^{-3} psi/ft. Dividing by (1-B) we have the maximum allowable:

$$(dp/dz)_a = \frac{256 \times 10^{-3}}{1-1.138} = .300 \times 10 \text{ psi/ft}^{-3}$$

$$= 20.7 \times 10^{-3} \text{ mb/ft}$$

This is comparable to an altitude of 18,300 ft. or a gross buoyancy of 450 lb., the maximum allowable inflation of a 30' diameter, .001" thick polyethylene balloon from the stand-point of pressure distribution.

In order to determine mathematically the point of failure due to pressure distribution we may use equations (3) and (5) and their derivatives:

$$\Delta p_z = \Delta z \left(\frac{dp}{dz} \right)_{air} (1-B)$$

$$\Delta p_z = \frac{4S_f t}{2(D\Delta z - \Delta z^2)^{1/2}}$$

at the point of tangency of these curves (T in Figure 26):

$$\Delta p_{T3} = \Delta p_{T5} \quad \text{and} \quad \left(\frac{dp}{dz} \right)_{T3} = \left(\frac{dp}{dz} \right)_{T5}$$

in equation (5), making $\frac{4S_f t}{2} = K$ and in equation (3), making $(dp/dz)_a (1-B) = m$, the slope of the line $\Delta p_z = \Delta z \cdot m$ we have:

$$(5a) \quad \Delta p_z = \frac{K}{(D\Delta z - \Delta z^2)^{1/2}}$$

and:

$$(3a) \quad \Delta p_z = m \Delta z$$

differentiating with respect to z :

$$(5b) \quad \frac{dp}{dz} = - \frac{K}{2} \frac{(D-2\Delta z)}{(D\Delta z - \Delta z^2)^{3/2}}$$

$$(3b) \quad \frac{dp}{dz} = m$$

Since at T, $\left(\frac{dp}{dz}\right)_3 = \left(\frac{dp}{dz}\right)_5$:

$$m = -\frac{K}{2} \frac{(D - 2\Delta Z)}{(D\Delta Z - \Delta Z^2)^{3/2}}$$

and, since at T, $\Delta p_{z3} = \Delta p_{z5}$:

$$m \Delta Z_T = -\frac{K \Delta Z_T}{2} \frac{(D - 2\Delta Z_T)}{(D\Delta Z_T - \Delta Z_T^2)^{3/2}} = \frac{K}{(D\Delta Z_T - \Delta Z_T^2)^{1/2}}$$

and:

$$\Delta Z_T (2\Delta Z_T - D) = 2(D\Delta Z_T - \Delta Z_T^2)$$

$$\Delta Z = \frac{3}{4} D$$

Then:

$$\Delta p_T = \frac{K}{\left(\frac{3}{4}D^2 - \frac{9}{16}D^2\right)^{1/2}} = \frac{K}{\sqrt{\frac{3}{4}}D}$$

$$m = \left(\frac{dp}{dz}\right)_{air} (1-B) = \frac{K(2 \cdot \frac{3}{4}D - D)}{2\left(\frac{3}{4}D^2 - \frac{9}{16}D^2\right)^{3/2}} = \frac{16K}{3\sqrt{3}D^2}$$

Allowable:

$$\left(\frac{dp}{dz}\right)_{air} = \frac{16K}{3\sqrt{3}D^2} \cdot \frac{1}{1-B}$$

For the example above,

Then: $D = 30'$, $S_f = \frac{900}{2}$, $t = .001$ in., $B = \frac{53.8}{386} = 0.138$ (helium)

$$\left(\frac{dp}{dz}\right)_{air} = \frac{16}{3\sqrt{3}} \cdot \frac{4}{2} \cdot \frac{900}{2} \cdot \frac{.001}{(30)^2 \cdot 12} \cdot \frac{1}{(1-0.138)} \text{ psi/ft}$$

$$\begin{aligned} \text{Allowable } \left(\frac{dp}{dz}\right)_{air} &= 0.298 \cdot 10^{-3} \text{ psi/ft} \\ &= 20.55 \text{ mb/ft} \end{aligned}$$

This is comparable to an altitude of approximately 18,200 ft. Thus the maximum allowable buoyancy for a 30' diameter, .001" thick polyethylene balloon filled with helium is 440 lb.

(2) Appendix-Opening Considerations

As an open-appendix, constant-volume balloon ascends the lifting gas will expand due to the decrease in the pressure

of the surrounding atmosphere. Upon reaching the altitude at which it is full it will still have an unbalance in the direction of increase of altitude due to the excess buoyancy causing ascent. This unbalance is gradually decreased as the balloon rises (with a fixed volume) into less dense air. Meanwhile excess gas pressure is relieved by valving gas through the appendix until the balloon system is in a condition of equilibrium. The portion of the ascent after the balloon has become full is known as the "leveling-off" period.

The lifting gas which is valved out through the appendix will cause a "back pressure" inside of the balloon which must be transferred to the balloon fabric or film. In other words, there must be a pressure difference across the appendix opening during this period to force the excess lifting gas out of the balloon. Let us analyze this back pressure by the method used by Picard. Using the rules of subsonic aerodynamics, Picard suggests that air at sea level escaping at 1333 ft/sec. produces a back pressure of 1 atmosphere and that back pressure induced is proportional to the square of escape velocity of the gas and inversely proportional to the density of the gas escaping. Volume of gas lost in ascent through 1 foot is, within a reasonable degree of accuracy:

$$(6) \quad \frac{\Delta V}{\Delta Z} = \frac{V}{P} \frac{dp}{dz} \cdot \frac{T + \Delta T}{T}$$

$\frac{\Delta V}{\Delta Z}$ = volume lost per foot of ascent (ft.³/ft.)

V = balloon volume (ft.³)

P = pressure of free air (psi)

$\frac{dp}{dz}$ = pressure change with increase of Z (psi/ft.)

T = temperature of air (°C abs.)

ΔT = change in air temperature during rise (°C)

For ascent in the troposphere this relationship will reduce to:

$$(7) \quad \frac{\Delta V}{\Delta Z} = \frac{V}{27,800} \frac{FT^3}{FT}$$

The velocity of escape of gas, then:

$$(8) \quad V = \frac{dz}{dt} \frac{V}{27,800} \cdot \frac{1}{A_0}$$

V = velocity of escape of lifting gas (ft./sec.)

$\frac{dz}{dt}$ = ascent velocity of balloon (ft./sec.)
 $\frac{V}{27800}$ = volume of gas lost per foot of ascent (ft.³/ft.)
 A_o = area of appendix opening (ft.²)

The back pressure caused by this velocity:

(9) $\Delta p = \left(\frac{V}{1333} \right)^2 \cdot 14.7 \frac{d_g}{d_{g0}}$
 Δp = back pressure induced (psi)
 V = velocity of escape of gas (ft./sec.)
 d_g = density of lifting gas at altitude of balloon (lb./ft.³)
 d_{g0} = density of air at sea level (lb./ft.³)
 14.7 = pressure of air at sea level (psi)
 1333 = escape velocity of air to produce back pressure of 1 atmosphere at sea level (ft/sec)

or, combining equation (8) and (9):

$$(10) \quad \Delta p = \frac{\left(\frac{dz}{dt} \cdot \frac{V}{27800} \cdot \frac{1}{A_o} \right)^2}{(1333)^2} \cdot 14.7 \frac{d_g}{d_{g0}} \text{ psi}$$

As an example, let us find the back pressure induced in a 20' diameter balloon with a 1' diameter opening ascending at 800 ft./minute, as it becomes full at 30,000 ft. (density of helium @ 30,000 ft. = $\frac{500}{1013} \cdot \frac{290}{232} \cdot 0.138 d_{g0}$)

$$\Delta p_{20} = \frac{\left(\frac{800}{60} \cdot \frac{\pi \cdot 20^3}{6 \cdot 27800} \cdot \frac{4}{\pi} \right)^2}{1333^2} \cdot 14.7 \cdot 0.051 = .275 \times 10^4 \text{ psi}$$

It is to be noted that equation (5) can be arrived at by more simple reconstruction of the standard equation for fluid flow:

$$(11) \quad \frac{dV}{dt} = C_d A_o \sqrt{2gh}$$

$\frac{dV}{dt}$ = volume rate of flow (ft.³/sec.)
 C_d = a constant of flow

g = the acceleration of gravity (ft./sec.²)

A_a = area of the opening (ft.²)

h = head of fluid causing flow (ft.)

since $h = \frac{144 \Delta p}{d_g}$, we have:

$$(12) \quad \Delta p = \frac{d_g}{288g} \left(\frac{1}{C_d A_a} \cdot \frac{dV}{dt} \right)^2 \text{ psi}$$

where d_g is density of the lifting gas (lb./ft.³).

From equation (7) we have:

$$\frac{dV}{dt} = \frac{dz}{dt} \frac{V}{27800} \text{ ft}^3/\text{sec}$$

therefore:

$$(13) \quad \Delta p = \frac{d_g}{288g} \left(\frac{1}{C_d A_a} \cdot \frac{dz}{dt} \cdot \frac{V}{27800} \right)^2 \text{ psi}$$

Comparing equations (10) and (13) we see that if the equations are equal:

$$\frac{1}{288g C_d^2} = \frac{14.7}{1333^2 d_{a0}}$$

If we let $C_d = .975$, a reasonable value for the relatively low velocity flow of gas through the appendix, we have:

$$\frac{1}{288g C_d^2} = 113.5 \times 10^{-6} \text{ ft-sec}^2/\text{in}^2$$

$$\frac{14.7}{1333^2 d_{a0}} = 114.8 \times 10^{-6} \text{ ft-sec}^2/\text{in}^2$$

Therefore, the equations (10) and (13) are equal and interchangeable.

It may be noted from equations (10) and (13) that for any given balloon, appendix area and balloon volume are fixed, and the related variables are lifting gas density, rate of rise, and allowable back pressure. For any given allowable back pressure greater rates of rise are allowable at higher altitudes (where d_g is lower).

Once a floating altitude has been decided upon or it has been decided to carry a given load as part of the balloon system, we can find a maximum allowable rate of rise. We must consider

the pressure distribution of the lifting gas and the internal back pressure due to valving gas. To find maximum rates of ascent for various balloons would necessitate a complicated series of trial and error solution. In general, it has been more practical to determine a maximum rate of rise for normal operating conditions for any given size balloon by finding the maximum allowable rate for the balloon rising to its lowest normal operating level (i.e., we will find the maximum allowable rate for the worst normal operating conditions and consider it a maximum for all normal operating conditions.)

Let us take the case of a 20-foot diameter polyethylene balloon of .001" thickness. Lowest normal floating altitude is 20,000 ft. MSL. Let us assume that the balloon will be full and begin valving gas at 15,000 ft. MSL. Assume the appendix diameter to be $\frac{1}{2}$ foot. Using equation (1) to find maximum allowable internal pressure and assuming the critical x-y plane to be that of maximum diameter $\Delta Z = D/2$, we have:

$$\Delta P_{all.} = \frac{4S_f t}{D} = \frac{4(900/2) \cdot .001}{12 \cdot 20} = .0075 \text{ psi}$$

(Here we have introduced a factor of safety by saying $S_f = 900/2$ instead of 900 psi, the ultimate strength in tension of polyethylene.) Pressure distribution:

$$\Delta P_{D/2} = \Delta Z \frac{dp}{dz} (1-B) = \frac{10}{2} \cdot 3.38 \cdot 10^{-4} \cdot .862 = .00291 \text{ psi}$$

Allowable back pressure:

$$\Delta P_{bp} = \Delta P_{all} - \Delta P_{D/2} = .0046 \text{ psi}$$

Maximum rate of rise using equation (13);

$$\frac{dZ}{dt} = \sqrt{\frac{288 \Delta P_{bp} g}{d_g}} \left(\frac{27800}{V} C_d A_a \right) \text{ ft/sec}$$

$$= 100.7 \text{ ft/sec}$$

$$= 6000 \text{ ft/min}$$

It is evident from this calculation that the rate of rise of the 20-ft. diameter polyethylene balloon is not a critical factor in bursting unless the open appendix becomes snarled and gas is not allowed to escape.

Rate of rise and appendix openings are important from the stand-point of balloon design. For operational reasons it is important to have a rapid rate of rise. In order to make most efficient use of weight, the balloon film should be thin. As mentioned

in the preceding section on diffusion and leakage the appendix opening should be small. It can be seen that as we make one of our conditions better, we must sacrifice at least one of the others. Therefore, balloons must be designed compromising rate of rise, balloon thickness, and appendix opening. Methods of decreasing the appendix opening, except during the valving of lifting gas, are discussed in other sections of this technical report. In general they consist of means of applying a delicate relief valve, capable of opening to a large area with application of only slight internal pressure, and also closing tight upon release of this internal pressure.

G. A General Equation of Motion

If we collect and relate the variables incidental to balloon flight, we may form a general equation of motion. This is most easily expressed in terms of forces acting upon the balloon system. We may equate an acceleration term plus a drag or friction term against a term to include all other forces:

$$(1) \quad m D^2z + n (Dz)^2 = \Sigma F$$

This is a differential equation of a type common in mechanical vibration problems, and solution for the variable z would not be difficult if relationships of the many variables included in the terms n and ΣF were simple. However, the complexity of the balloon system introduces many terms as parts of n and ΣF .

We shall first state the more complex form of equation (1) above and then attempt to explain the variables included in each part of the equation. As will be shown, it is extremely difficult to find a complete solution of the equation since many of the variables are in themselves extremely complex and at this time incapable of accurate solution. Therefore, our discussion will be more of a qualitative rather than a quantitative nature.

The general force equation is:

$$(2) \quad \frac{W}{g} D^2z + C \frac{\rho}{2} A (Dz)^2 = V_b (\rho_a - \rho_g) - W \pm F_{atm}$$

The force due to acceleration $F_A = \frac{W}{g} D^2z$
where:

W = weight of the balloon system

g = acceleration of gravity

D^2z = acceleration of the balloon system (An acceleration in the direction of greater altitude is considered positive.)

The force due to friction or drag $F_D = C_D \frac{\rho}{2} A Dz$ (This assumes that there is no vertical motion of the air in which the balloon system is floating. We shall later consider the case where an atmospheric force is causing vertical motion of the air.)
Where:

ρ = mass density of the air surrounding the balloon system

A = projected area of the balloon on a plane perpendicular to the relative velocity

Dz = vertical velocity of the balloon system
(Velocity in the direction of greater altitude is considered positive.)

C_D = a coefficient of drag, dependent on Reynolds number $N_R = \frac{Dz d \rho}{\mu}$ where:

d = diameter of sphere (ft.)

ρ = mass density of surrounding fluid $(\frac{\text{lb. sec.}^2}{\text{ft.}^4})$

μ = viscosity of surrounding fluid $(\frac{\text{lb. sec.}}{\text{ft.}^2})$

A plot of drag coefficient against Reynolds number for a sphere is shown in Figure 27.

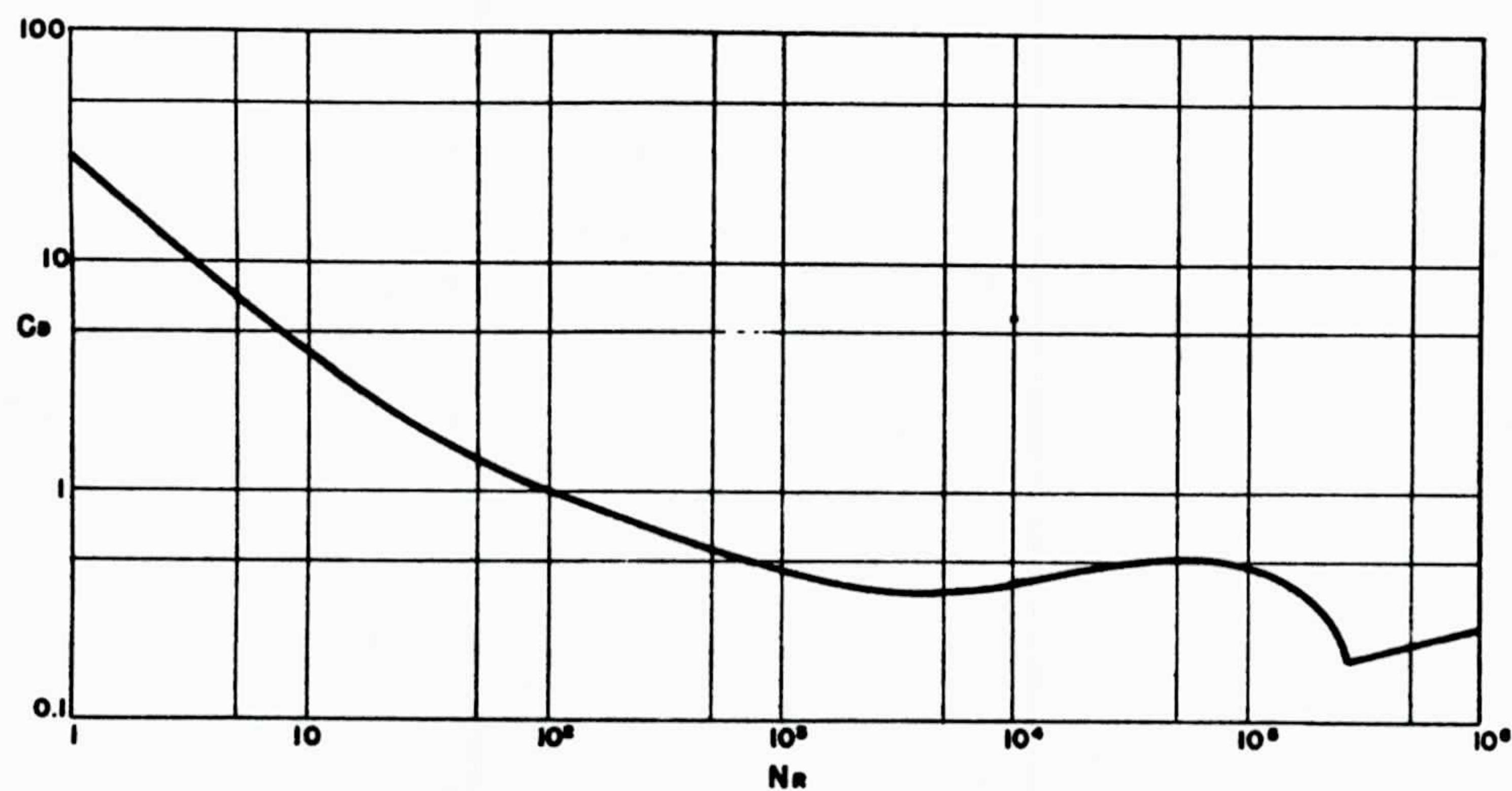


Figure 27. Drag coefficient vs. Reynolds Number, for sphere.

If a balloon is teardrop in shape rather than spherical, the curve would be modified so that the value of C_D , for a given Reynolds number would be lower. In this case the sudden drop in C_D as Reynolds number increases (the change from viscous to turbulent flow) would occur at a lower Reynolds number.

We have thus far in our discussion assumed that there is no vertical motion of the air surrounding the balloon system relative to the coordinate z . However, this is not necessarily the case under actual conditions. In many instances vertical air movement is found in the atmosphere. Therefore, we must introduce a term to allow for this vertical air movement. In equation (2) this term was indicated as $\pm F_A$, the external atmospheric force.

We may consider this vertical air movement in terms of a velocity $D\zeta$. Then the vertical velocity of the balloon system relative to the air surrounding the system will be the difference between the velocity of the balloon relative to the absolute altitude Dz and the velocity of the surrounding air relative to the absolute altitude. This may be equated as $Dz - D\zeta$, where Dz and $D\zeta$ are both considered positive in the direction of increase of altitude.

The total force due to the drag, or friction will be:

$$F_D + F_{ATM} = C_D \frac{\rho}{2} A (Dz - D\zeta)^2$$

where the notations are those used previously, except that now $N_R = \frac{(Dz - D\zeta) d\rho}{\mu}$. The relationship between N_R and C_D will be those used previously.

The force due to buoyancy of the lifting gas $F_B = V_b (\rho_a - \rho_g)$ where:

V_b = balloon volume (ft.³)

ρ_a, ρ_g = density of the air and lifting gas, respectively (lb./ft.³)

This term may also be stated as: $F_B = V_b \left(\frac{p_a}{R_a T_a} - \frac{p_g}{R_g T_g} \right)$ where:

p_a, p_g = pressure of air and lifting gas

R_a, R_g = specific gas constant of air and lifting gas

T_a, T_g = temperature of air and lifting gas

The changes that will take place in this expression are those due to a temperature difference between the lifting gas and the free air, change in volume of the balloon due to loss of lifting gas, change of the gas constant of the lifting gas due to dilution with air, and (in the case of a balloon that will hold an internal pressure) pressure difference between lifting gas and surrounding air.

Temperature effects were discussed previously in this report. Those discussions on superheat and adiabatic temperature change will apply to the general equation. In general, temperature of the free air and lifting gas can be measured to a fair degree of accuracy.

Balloon volume at any time is a function of original full balloon volume plus the summation of all the changes in volume due to pressure and temperature changes and loss of lifting gas. It will also be affected by loss or gain of air by the balloon through diffusion and intake of air through the appendix. The non-extensible balloon will have a maximum volume and thus any changes tending to increase the gas volume to a value greater than the balloon volume will result in a valving of the excess lifting gas into the air, or (in the case of a balloon which will carry internal pressure) a pressure increase of the lifting gas.

It is for this reason that a non-extensible balloon is said to be in a state of stable equilibrium in a direction of greater altitude when it is full. However, in a direction of lesser altitude, and with the case of a partially full floating balloon, the system is in a state of neutral equilibrium.

Composition of the lifting gas will change due to contamination of the lifting gas by the entry of air into the balloon, either by the flow of air through the appendix opening or by diffusion of air into the balloon. We may then modify our term for density of the lifting gas to include a term for the pure gas and a term for the contaminating air. Using the method of partial volumes, we may equate the density of the lifting gas at any time by:

$$\text{where: } \rho_g = \frac{p_g}{V_b T_g} \left(\frac{V_p}{R_p} + \frac{V_a}{R_a} \right)$$

ρ_g = pressure of the lifting gas

V_b = total lifting gas volume

V_p = volume of pure lifting gas in balloon

V_a = volume of air in balloon

R_g = specific gas constant of pure lifting gas

R_a = specific gas constant of air

Then, calling $\frac{V_p}{V_b} = x_p$ and $\frac{V_a}{V_b} = x_a$ (here we see that since $V_p + V_a = V_b$, $x_p + x_a = 1$) we may equate:

$$\rho_g = \frac{p_g}{T_g} \left(\frac{x_p}{R_p} + \frac{x_a}{R_a} \right)$$

The equation for the force due to buoyancy will then become:

$$F_b = V_b \left[\frac{P_a}{R_a T_a} - \frac{P_g}{T_g} \left(\frac{x_p}{R_p} + \frac{x_a}{R_a} \right) \right]$$

If the balloon is of the type that will carry no internal pressure $P_a = P_g$, and we may state that:

$$F_b = V_b P_a \left[\frac{1}{R_a T_a} - \frac{1}{T_g} \left(\frac{x_p}{R_p} + \frac{x_a}{R_a} \right) \right]$$

Discussions of the contamination of the lifting gas are included under the section on "Diffusion and Leakage of Lifting Gas" of this report.

The force due to the weight of the system $F_w = W$ The weight of the balloon system at any time is a function of the original weight of the system plus the change of weight of the system. This change in the weight of the system is caused by the loss of ballast and the weight of the system at any time (t):

$$W_t = W_0 - \sum_{t=0}^t \Delta W_b$$

where:

W_0 = the original weight of the system

$\sum_{t=0}^t \Delta W_b$ = the sum of all the losses of ballast from time at which $W = W_0$ until the time t

The value of the term $\sum_{t=0}^t \Delta W_b$ depends on the type of ballast control. With no ballast:

$$\sum_{t=0}^t \Delta W_b = 0 \quad \text{and} \quad W_t = W_0$$

If a constant ballast flow is used:

$$\text{where: } \sum_{t=0}^t \Delta W_b = \frac{dW}{dt} t$$

$\frac{dW}{dt}$ = rate of ballast flow

t = elapsed time from $t=0$ to $t=t$

If a practical fixed opening type of ballast control is used:

$$\text{where: } \sum_{t=0}^t \Delta W_b = f(t, h, \mu_b, \rho_b, A)$$

t = time

h = head of ballast above opening

μ_b = viscosity of ballast fluid

ρ_b = density of ballast fluid

A = area of opening

The ballast flow at any time, t :

$$\frac{dW}{dt} = C_F \rho_b A \sqrt{2gh}$$

so that:

$$\sum_{t_0}^t \Delta W_b = \int_{t_0}^t C_F \rho_b A \sqrt{2gh} dt$$

where:

C_F is a coefficient of discharge, dependent upon Reynolds number of the flow through the opening

In this equation only $\sqrt{2gh}$ and A are constants (if temperature effect on the opening A is neglected), ρ_b is dependent upon temperature of the fluid and h is dependent upon the shape of the vessel containing the fluid and time t .

If ballast flow is controlled by atmospheric pressure:

$$\sum_{t_0}^t \Delta W_b = \sum_{t_0}^t \frac{dW}{dt} \uparrow p > p_c \quad , \text{with a fixed valve opening (open-or-closed valve)}$$

where $\uparrow p > p_c$ represents the time when atmospheric pressure is greater than the pressure of control. Here, again, $\frac{dW}{dt} = C_F \rho_b A \sqrt{2gh}$

With ballast flow proportional to $p - p_c$:

$$\sum_{t_0}^t \Delta W_b = \sum_{t_0}^t \frac{d(\frac{dW}{dt})}{d\Delta p} (p - p_c) \uparrow p > p_c$$

where:

$$\frac{d(\frac{dW}{dt})}{d\Delta p} \quad \text{relationship between rate of flow and pressure difference } (p - p_c) \text{ where } p > p_c$$

If we include a rate of pressure change control or a rate of ascent control such that there is no ballast flow if rate of pressure change is less than some value $-(\frac{dp}{dt})_c$ or rate of ascent is greater than some value $(\frac{dz}{dt})_c$, we impose the condition for ballast flow in the above two cases that for flow to occur $p > p_c$, and $\frac{dp}{dt} > (\frac{dp}{dt})_c$ or $\frac{dz}{dt} < (\frac{dz}{dt})_c$

We might also have a control that will open or close a valve on rate of pressure change such that:

$$\sum_{t_0}^t \Delta W_b = \sum_{t_0}^t \frac{dW}{dt} \uparrow \frac{dp}{dt} > (\frac{dp}{dt})_c$$

where $\frac{dp}{dt} > \left(\frac{dp}{dt}\right)_c$ is the time during which pressure change of the air surrounding the balloon is greater than a design value of pressure change causing ballast flow.

The general equation, then, indicates the relationships between the variables involved in balloon flight. The discussions in this section of the report, "Equations and Theoretical Considerations," attempt to qualitatively organize the relationships between these variables in order that a complete overall picture of the aspects of balloon flight can be formulated.

It should be stressed that the theoretical relationships as stated here do not lend themselves to simple insertion into an overall equation which is easily solved. Rather, solutions of many of the variables are in themselves complex. At this time it appears impractical to delve too deeply into such matters as "the variation of diffusion and leakage through various types of balloons under different conditions" or "a study in the change of coefficient of drag on a balloon system at all points during its flight." It has been more practical to generally state the relationships in unsolved form and concentrate the experimental portion of the research problem on such matters as actual development of balloon controls.

V. TELEMETERING

A. Information Transmitted

The need for a balloon-borne transmitter and some system of ground receiving and recording was recognized early in the work of the project. The primary objective of such telemetering was to collect data to evaluate the altitude controls applied to the balloon system. Pressure, perhaps the most important data, was measured by the use of radiosonde-type aneroid capsules. A discussion of the pressure modulators used is given in the following section.

A second use of air-borne transmitters was to provide a beacon for radio direction-finding. With proper equipment a balloon-borne transmitter can provide a signal to guide an aircraft, homing with a radio compass, or provide a position "fix" by the crossed azimuths of ground receiving stations.

In addition to these two very important functions of altitude determination and positioning, telemetering systems were used to detect and transmit temperature data and ballast flow data. The equipment used for these purposes is described below.

B. Transmitters Used

(1) 72-Megacycle Radiosonde Transmitter (T-49)

The standard T-49 transmitter of the Army Weather Service was first used in project work, with a modified commutator bar switching specially coded resistors into the circuit as the balloon passed from one critical pressure to another. The operating characteristics of this transmitter may be found in the following publications: T.B. Sig. 165, T.M. 11-2403, T.M. 11-2404 and the Weather Equipment Technician's Manual.

The defects which were encountered in the use of this transmitter were principally (1) relatively short range and (2) unfitness for direction-finding using available equipment. Our experience has been that reception from the T-49 transmitter by standard equipment is not much above 80 miles under good conditions. When flights were made which traveled many times this distances, the inadequacy of this transmitter was clearly demonstrated.

The problem of direction-finding is of major importance when attempts are made to position and track the balloon and its equipment train. Since no standard directional receiver equipment is available for this use with the T-49, this transmitter is of limited value.

(2) 400-Megacycle FM Transmitter (T-69)

The T-49 transmitter was abandoned in favor of the T-69 400-mc system as soon as ground receiving equipment for the latter was available. By using the directional receiving set SCR-658 with the T-69 transmitter, the problem of direction-finding and positioning was attacked. A second advantage enjoyed by this system is the improved range attainable.

Our experience has been that an SCR-658 set in good condition can receive a signal up to a range of 150 miles, providing that the line-of-sight transmitter is high enough to preclude blocking by intervening terrain. The use of two or more sets to increase the area of a tracking net is discussed under "Radio Direction-Finding" below.

The operating characteristics of the T-69 system and the SCR-658 may be found in these publications: T.B. Sig. 165, T.M. 11-1158A.

Pressure indicators were obtained, as with the T-49, by use of the modified commutator bar switching specially coded resistors into the circuit as the balloon passed from one fixed pressure to another. A few special tests were made of a chronometric system of pressure modulation. For a complete discussion of pressure modulation methods, see Section VI, A.

(3) Low-Frequency Transmitter (AM-1)

A low-frequency transmitter developed by the Electrical Engineering Department of New York University was adapted to replace or supplement the T-49 and T-69 transmitters. The carrier frequencies used have been in the region 1 mc to 3 mc. The schematic of this set is shown in Figure 28, as operated at 3135 kc. The output is approximately 2 watts, and a typical air-to-ground range is 300 miles, although reception of more than 450 miles has been attained by both ground and air-borne receivers.

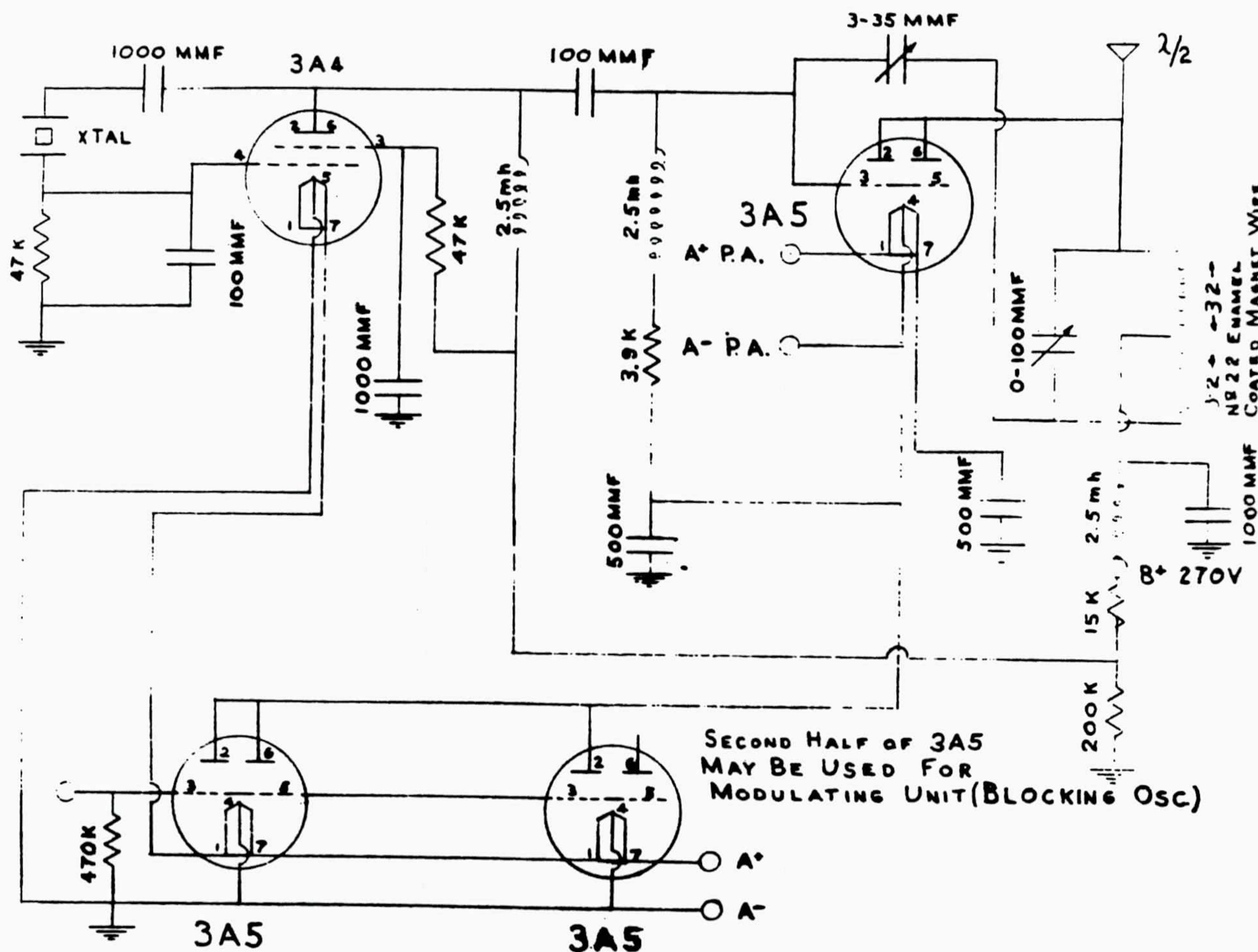


Figure 28. Schematic diagram, AM-1 transmitter.

Information is introduced in a manner similar to that employed in conventional radiosonde transmitters: resistances are switched into the blocking-oscillator grid circuit. In the case of pressure or ballast-count, fixed resistors causing distinct blocking frequencies are used; for temperature, the switch introduces the thermistor resistances.

When this transmitter operates at a lower frequency, say 1746 kc, the standard aircraft radio compass can be used to find the direction to the transmitter. No suitable standard equipment for ground direction-finding has been available to the project.

C. Receivers and Recorders Used

For the T-49 and T-69 radiosonde transmitters, standard ground-station equipment was used to receive and record the signal. An appropriate receiver (National 110 for the T-49 and SCR-658 for the T-69) feeds the signal through a frequency meter and into a Friez recorder, model AN/FMQ-1(). With this system, frequencies between 10 and 200 cycles per second can be recorded.

When the Olland-Cycle pressure modulator is used, (see Section VI, A,3) with low-frequency pulses indicating the completion of the pressure or reference circuit, a recorder made by the Brush Development Co. (Model BL 212) replaces the Friez recorder and frequency meter. With the AM-1 transmitter, the usual ground receiver has been the Hammarlund Super-Pro Model SP-400-X. For aircraft operation, an aircraft radio compass such as AN/ARN-7 is used.

D. Batteries Used

To extend the life of the batteries used with the T-49 and T-69 transmitters, experimental packs were developed using both dry and wet cells. A typical "12-hour" dry-cell pack for the T-69 was composed of:

B supply: 135V--1 ea. B90FL (especially assembled for N.Y.U. by Burgess Battery Co.) or 6 ea. Burgess XX30 in series--parallel

A supply: 6V--1 ea. Burgess 2F4 or 2 ea. F4H in parallel

C bias supply: 45V tap of B90FL or XX30 assembly

With an AM-1 transmitter, the input power required is as follows: "B" supply, 270 volts at about 300 milliamperes; main "A" supply, $1\frac{1}{2}$ volts at 600 milliamperes; and a separate "A" supply for the power amplifier, $1\frac{1}{2}$ volts at 200 milliamperes. The battery pack includes 8 Burgess XX45 or Eveready 467 in series--parallel; 2 Burgess 4FH batteries in parallel; and one 4FH, respectively. This pack lasts about 20 hours in flight. Also included in the battery container were batteries for auxiliary functions such as Olland-Cycle or program-switch motors, ballast-control relays, and bring-down mechanisms.

The problem of operating at cold temperature was given much consideration. Special cold temperature batteries were tried with insufficient difference in performance to justify the added expense and difficulty of procurement. In addition, it was felt that

mass-production methods and quality control associated with standard dry batteries gave greater assurance of satisfactory performance.

Subsequent measurements made of the temperature inside the transmitter battery pack showed that the temperature can be maintained above -10°C if the transmitter and batteries are housed in a box insulated with one- to two-inch walls of Styrofoam. This insulation is effective even through long nighttime periods when no solar heating is added.

One type of battery tested in flight was a light-weight wet cell (Burgess Type AM) of the "dunk" type, (magnesium + silver chloride). These cells were vacuum-packed to provide indefinite shelf-life. Activated by immersion in water just before release, they were expected to produce a constant voltage over a period of 6 hours to overcome cold temperature effects. Those units used proved to be rather unsatisfactory and subject to erratic behavior. Furthermore the cost of the cells was very great compared with ordinary cells.

E. Radio Direction-Finding

For ground stations, when the balloon-borne transmitter is a T-69, the SCR-658 RDF set has been used. With such a set the radio signal can be picked up at distances up to 150 miles and good azimuth bearing may be obtained (accurate to less than one degree). Although the elevation angle may be obtained with equal accuracy when free from distortion, angles of less than 13 degrees are usually affected by ground reflection to such an extent as to render them valueless.

To extend the range over which such sets were effective, two or more usually were used, positioned along the expected track of the balloon at intervals of about 100 miles. With two sets giving crossed azimuth "fixes" the position may be determined. If the elevation angle is above 13 degrees, it is possible to fix the balloon with one SCR-658 (assuming the pressure altitude is known).

For details of the maintenance and use of the SCR-658, see War Department publication T.M. 11-1158A.

When aircraft are used to follow and position the balloon, the use of a radio-compass is found to be feasible, using the AN-1 transmitter at a frequency that is within the limits of the compass receiver. By homing on the signal and flying along the indicated bearing until the compass needle reverses, the balloon's position may be found from initial distances of up to 500 miles. No appreciable cone of silence has been observed in recent flights which used a transmitter operating at 1746 kc.

Radio compass equipment, AN/ARN-7, is described in U. S. A. A. F. publication T. O. 68-10.

F. Radar and Optical Tracking

Because of their limited range, ground radar sets and theodolites were only of minor value in tracking balloons. Sets such as the SCR-584, the SPM-1, and MPS-6 are suggested when the balloon is expected to remain within the 60 to 80 mile range.

VI. INSTRUMENTATION

A. Altitude Determination

To provide accurate, sensitive and readable records of the pressure (altitude) encountered by the balloon, various systems have been tried. A modified radiosonde-type aneroid pressure capsule (Signal Corps ML 310-/) has been the basic sensing element, but three different systems of modulation of the radio signal as a function of pressure have been used.

(1) Standard Diamond-Hinman Radiosonde Pressure Modulator

Seen in Figure 29, the standard Diamond-Hinman radiosonde system provided first pressure sensor used. As the pen arm is pushed



Figure 29. Schematic diagram, Diamond-Hinman radiosonde system.

across the commutator by the aneroid capsule, it falls on alternating insulators and conductors attached to three circuits.

By knowing the altitude of release and counting the number of switches from conductor to insulator, the position along the commutator is known. This in turn is calibrated to give pressure values, from which the altitude may be computed.

This system was not suitable for floating balloons because (1) only 70 to 90 discrete contacts are provided to cover the entire atmospheric pressure range; this means that the best readability obtainable with this system is about ± 10 millibars. (2) When the balloon oscillates about a floating level, the frequent changes from one contact to another give ambiguous readings, since the number of discrete resistances used is limited.

For circuit details of this unit, see T.B. Sig. 165 and the Weather Equipment Technician's Manual.

(2) Specially Coded Radiosonde Modulators

To remove the ambiguity of altitudes reported by the system above, extra resistances were introduced into the circuits of those contacts near the floating level; thus, each contact gives a distinctive frequency and each pressure (altitude) can be clearly distinguished.

In this system, there still remains the lack of resolution or sensitivity inherent in the modulator with 70 to 90 contacts.

(3) Olland-Cycle Modulator

To improve the sensitivity of the pressure measurements, an Olland-Cycle (chronometric) pressure modulator was developed. Seen in Figure 30, the modulator contains a standard Signal

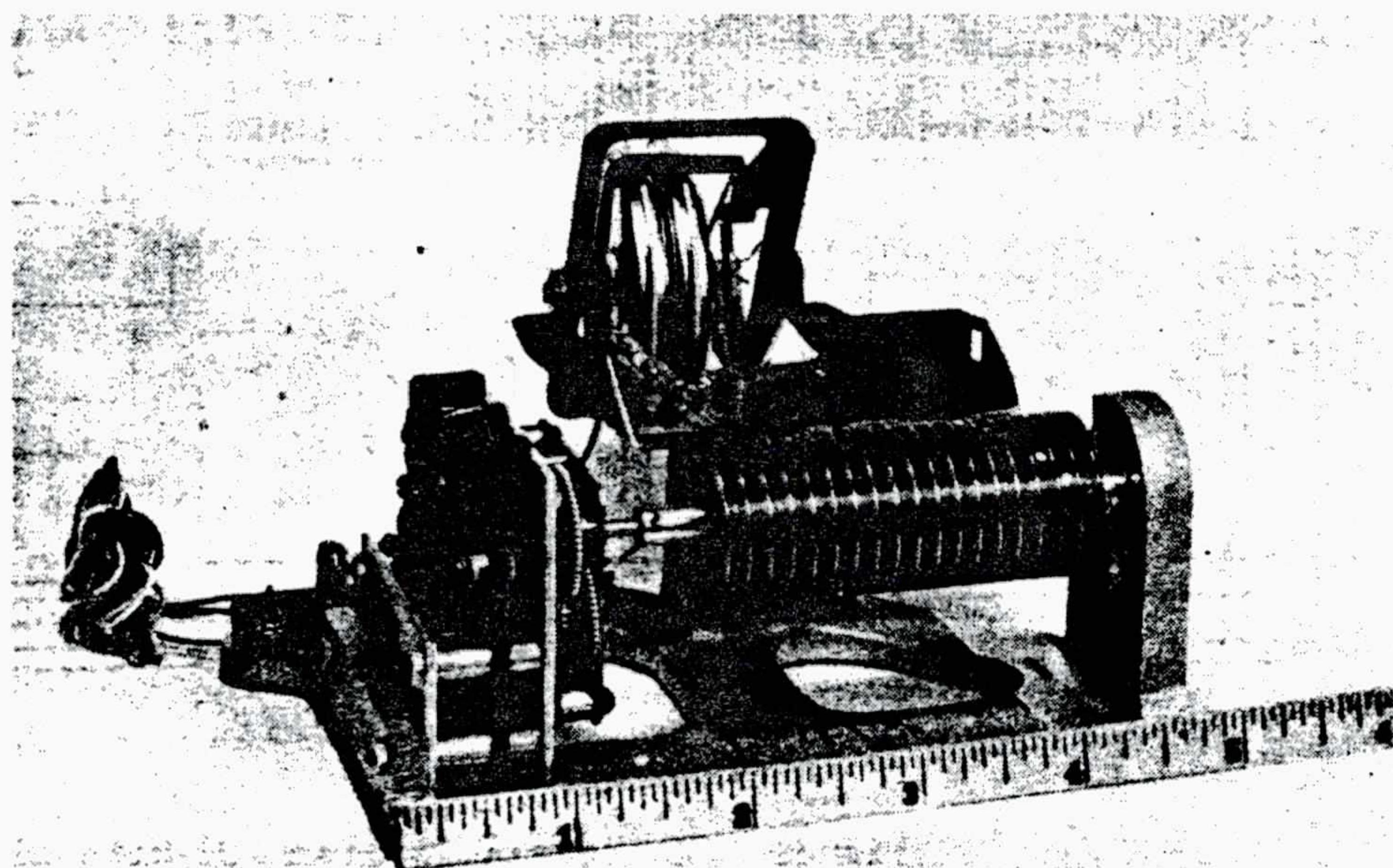


Figure 30. Olland-Cycle pressure modulator.

Corps ML-310/ radiosonde aneroid unit, a metal helix on a rotating cylinder of insulating material, and a 6-volt electric motor which rotates the cylinder.

There are two contacting pens which ride on the cylinder and complete the modulator circuit of the transmitter when they touch the helix. One pen is fixed in position and makes a contact at the same time in each revolution of the helix. This contact is used as a reference point for measuring the speed of rotation of the cylinder. The time that the second pen (which is linked directly to the aneroid cell) makes contact with the spiral, is dependent on the cylinder speed and on the pen position which is determined by the pressure. By an evaluation chart, the atmospheric pressure can be determined as a function of the relative position of the pressure contact as compared to the reference, thus eliminating all rotation effects except short-term motor speed fluctuations.

The operation of this unit is described in detail in Section II, "Operations," of this report, pages 54-63.

Some of the units flown have been made in the shops of the project, while others have been commercially supplied. The following specifications have been set up for performance of the Olland-Cycle:

Pressure range: 1050 to 5 mb.
Temperature range: +30°C to -30°C
Accuracy: ± 0.2 mb.
Readability: ± 0.1 mb.

A number of tests have been made on the accuracy of the Olland-Cycle modulator. The tests were of two types. The first was made running the unit at room temperature while the pressure remained constant. In the second, the pressure was varied from surface pressure to about 20 millibars several times at different temperatures. In tests of the first type, the maximum variation of pressure for a given contact pen position was 1.3 millibars in a series of 182 revolutions.

The most comprehensive tests of this type were made with two Olland-Cycles in the same bell jar running for three hours and ten minutes. Due to differences in speed of revolution, different numbers of revolutions were recorded in the time interval, 138 being made by instrument No. L-416 and 181 by instrument No. B-501. No. L-416 was made in the shops of the Research Division and used a Brailsford 6-volt (1 rpm nominal speed) motor, hard-rubber cylinder with 8 turns per inch of .010" nickel wire on a $\frac{1}{4}$ " aluminum plate base. No. B-501 was made by Brailsford and Co. to Balloon Project specifications. It had the same 6-volt motor, a paper base bakelite cylinder with 8 turns per inch of .010" nickel wire and was mounted on a 1/16" sheet aluminum frame.

The following statistics for a given pressure (1001.8 millibars) were computed:

	N.Y.U. Shop Model L-416	Brailsford Model B-501
on the mean	12.5%	34 %
within 0.1% of mean	25 %	50 %
" 0.2% " "	41.5%	70.5%
" 0.3% " "	62.5%	85.5%
" 0.4% " "	75 %	91 %
" 0.5% " "	95.6%	100 %

Other conclusions arrived at as a result of this test were:

- (a) Since changes of speed of the motors did not occur simultaneously in the two instruments, the speed changes probably are not due to slight changes in pressure or temperature.
- (b) Sensitivity varied from 0.1 to 0.9 millibars.
- (c) Sensitivity increased with increase of rate of pressure change.

It was recommended as a result of these tests that the records of flights when the balloon is floating be read to the nearest two-tenths of a percent of a cycle, or approximately two-tenths of a millibar, for high accuracy. When using the instruments manufactured by Brailsford and Co., satisfactory accuracy will be attained, if necessary, when the record is read to the nearest one-tenth of a percent of a cycle.

In the second group of tests the pressure was reduced slowly to about 20 millibars and increased to sea-level pressure at different temperatures.

The most comprehensive series of calibrations was made with the first instrument made by Brailsford and Co. Two runs were made at room temperature (22°C), one at -100°C , one at -30 to 37°C and one at -56 to -62°C . On the last test at the lowest temperature, the unit was found to be completely unreliable. The cause of failure was the erratic motor operation at extremely low temperatures. This had been observed previously during flights when the Olland-Cycle was not thermally insulated.

The other curves were plotted on a single chart in order to study their spread (see Figure 31). The envelope of curves thus obtained showed no regular temperature effect over the range $+22^{\circ}\text{C}$ to -37°C . In general, the envelope was less than 10 millibars wide although at some higher pressures it was as much as 12 millibars wide. The curves at low pressures fell closest together and were all within 3 to 4 millibars apart between 50 and 150 millibars and 6 millibars apart between 150 to 200 millibars.

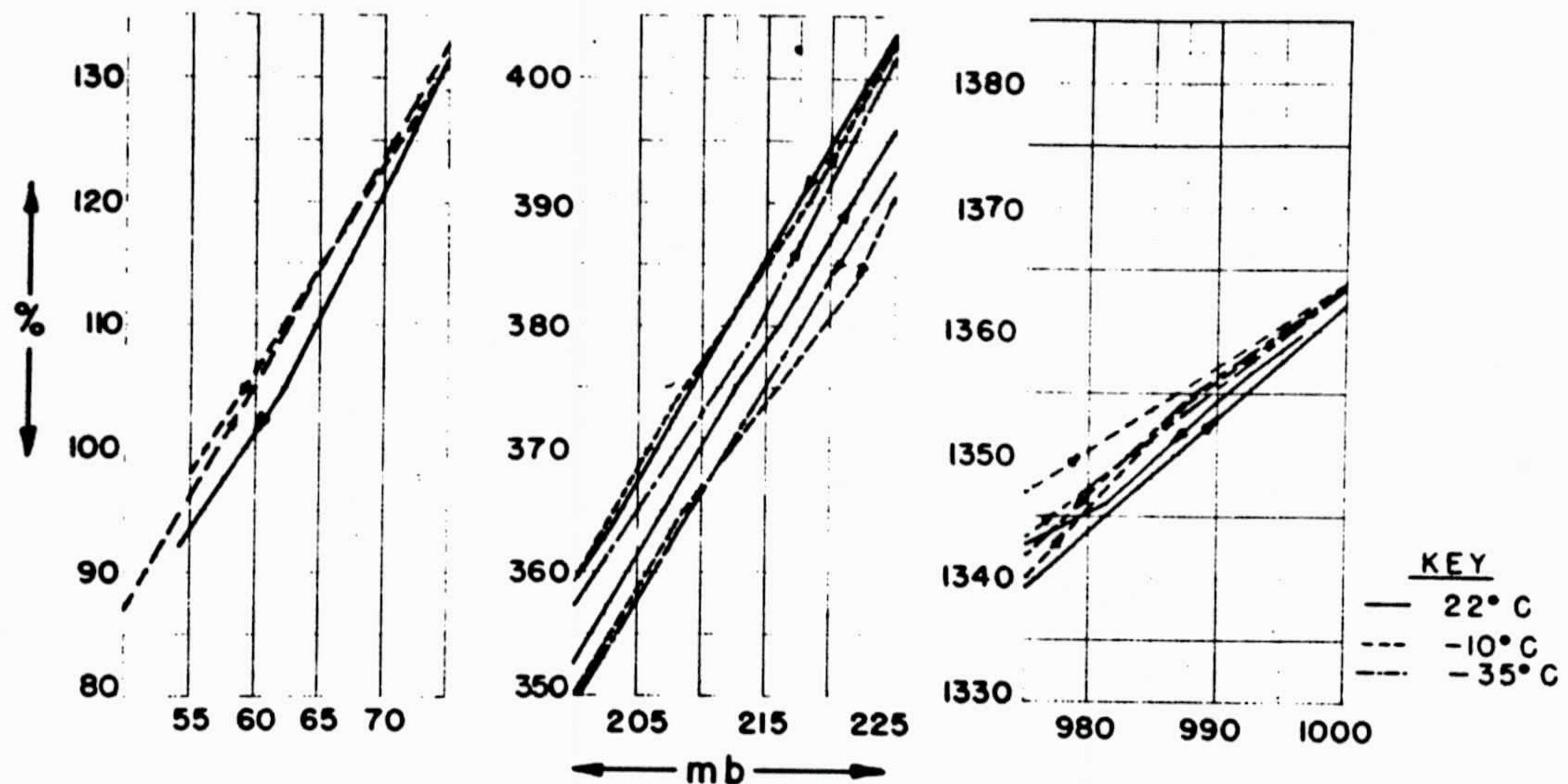


Figure 31. Tests of Olland-Cycle performance.

Hysteresis at any one temperature was the worst serious cause of the width of the envelope of curves. However, this error was minimized by the smoothness of the rotating cylinder and the continuous motion of the cylinder under the contact pen. Probably the necessary looseness of the bearings and the joining to the motor gear train had a great deal to do with the spread between different calibrations.

The maximum variation of any one calibration curve from the mean was about ± 3 millibars.

The following recommendations are made for the use of the Olland-Cycle modulator:

- The modulator should be mounted inside the battery box and insulated so as to keep its temperature above -30°C .
- During the rapid-rising portion of the flight the accuracy of the data warrants reading only to the nearest one percent of a cycle, or about one millibar of pressure.

Tests on the sensitivity of Olland-Cycle modulators indicate that although the accuracy is limited as indicated above, small variations may be detected with the result that it is valid to read the pressure record to the nearest tenth of one percent of one revolution.

When the Olland-Cycle principle was originally adopted, both clocks and electric motors were considered for the power supply. In addition to the tendency of clocks to stop at cold temperatures due to freezing of lubricants and unequal expansion of the parts, the movement of the clockwork in discrete steps limits the accuracy of sampling. For these reasons, electric motors are preferred.

The motor now in use has been built to meet the following specifications:

- (a) 6 to 7.5 volt operation.
- (b) 1 RPM gear train.
- (c) 20 to 40 milliamperes drain.
- (d) Speed change at low temperature to be no more than 20%.
- (e) Constancy of speed during any single revolution not to deviate by more than 0.3%.

To check the performance of these motors at cold temperatures, a series of tests was run on the motors now in use with the average case seen in Figure 32. The loss in RPM was more than

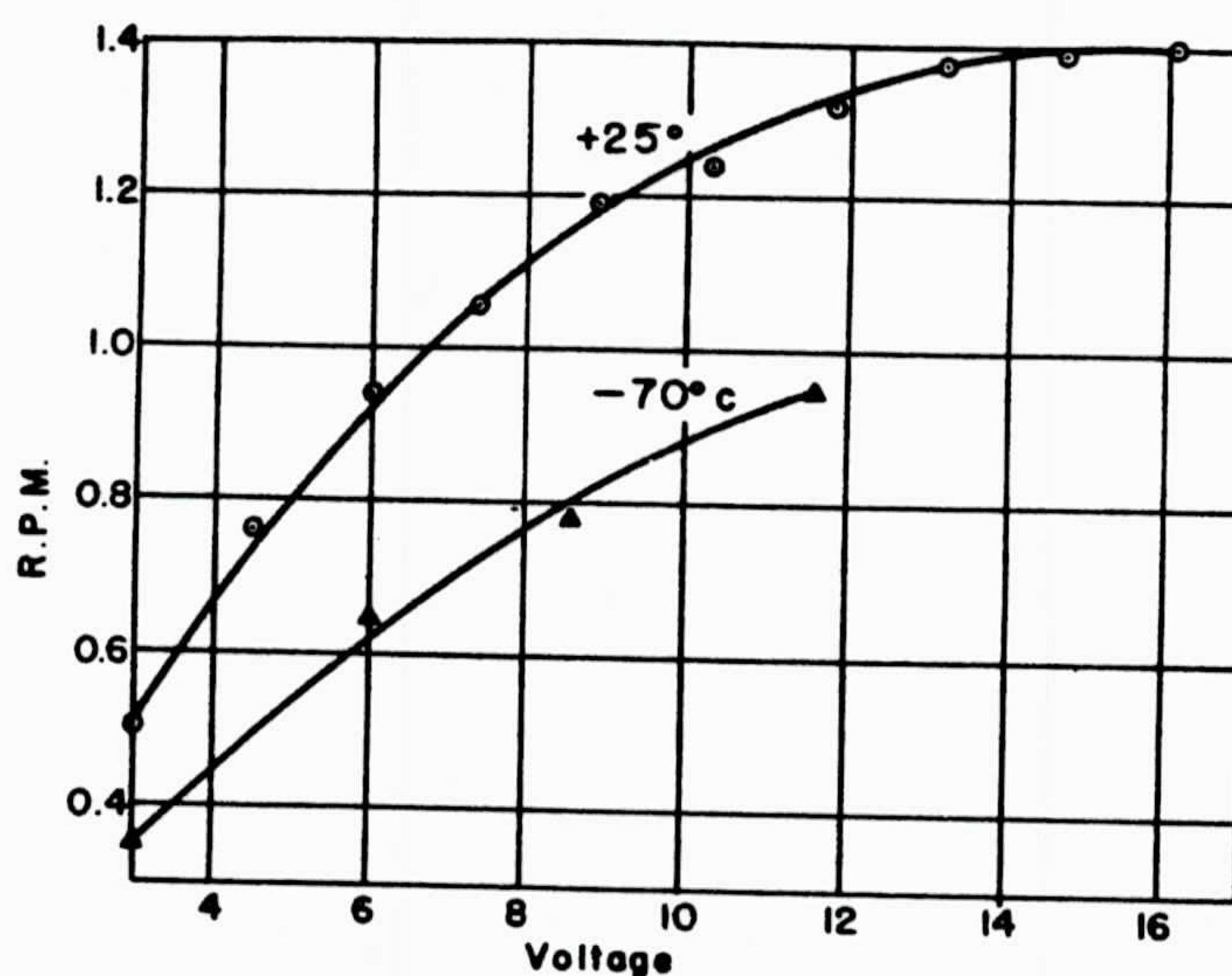


Figure 32. Speed tests of Olland-Cycle motors.

desired, but the motors continued to operate at a steady rate. As long as the speed of revolution does not vary markedly within a single revolution, the error is not serious. In early flights made at prolonged cold temperature, erratic performance

of the motor-driven units was observed; current practice is to provide adequate temperature insulation.

(4) Barograph

As a secondary pressure unit, a clock-driven barograph has been included on many flights. The instrument (shown in Figure 33)

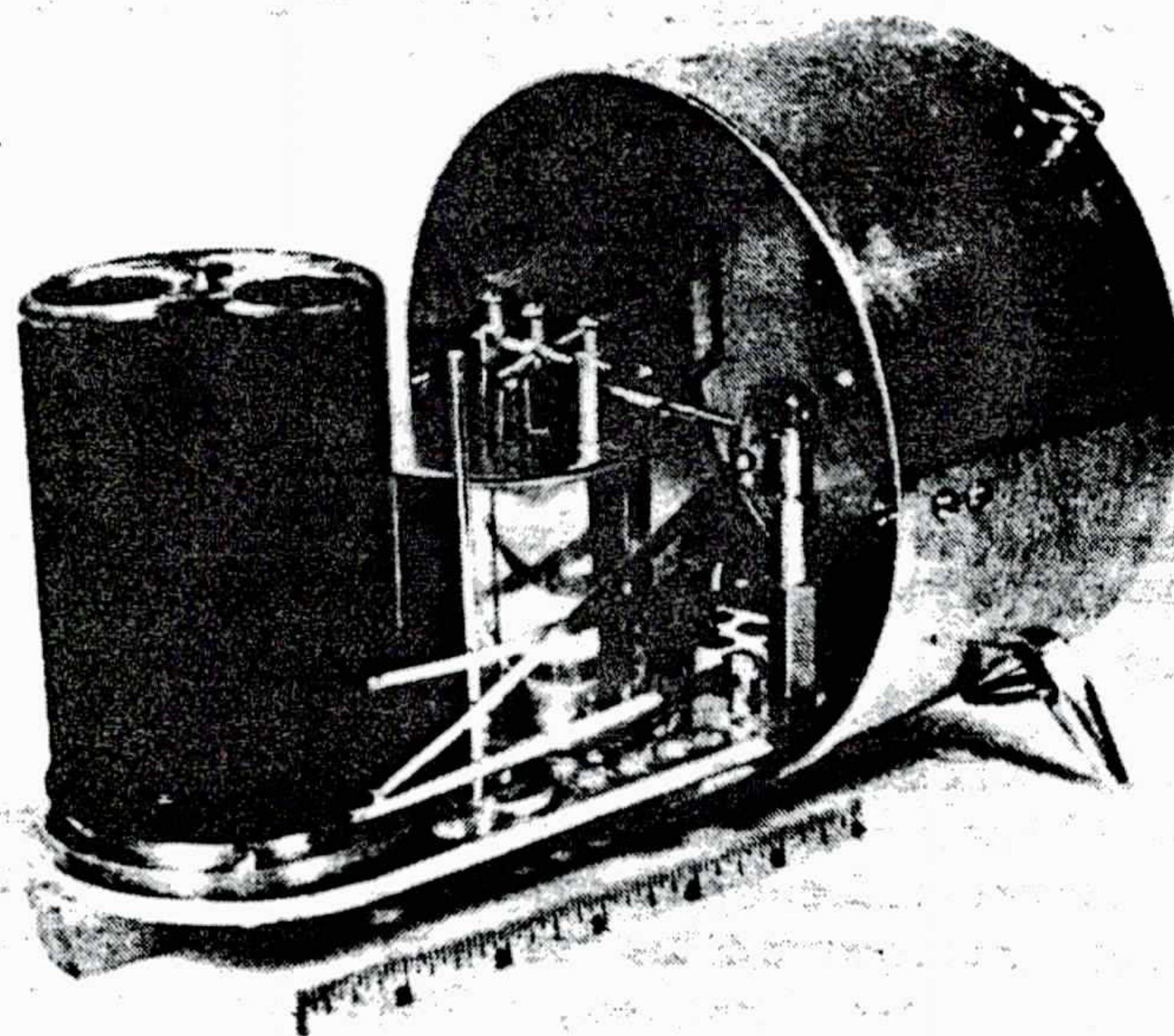


Figure 33. Smoked drum barograph.

will provide up to 40 hours of pressure data if recovered. About 70% of all those units flown to date have been recovered. The performance specifications are as follows:

- (a) Rotation: one revolution every 12 hours
- (b) Duration: 36 hours running time
- (c) Pressure range: 500 to 5 mb.
- (d) Accuracy: ± 5 mb.
- (e) Readability: 1.0 mb. or approximately .22 mm on the drum
- (f) Weight: 1000 grams
- (g) Time accuracy: 10%
- (h) Temperature compensation between 30°C and -70°C

Instruments have been built by Lange Laboratories to meet these requirements (the time accuracy figure is questionable).

A description of the use of this barograph is given in Part II, "Operations," of this report.

B. Temperature Measurement

To interpret some of the observed balloon behavior, a knowledge of the temperature of the gas and the outside air temperature was required. The evaluation of "superheat" effects was accomplished primarily by exposing a conventional radiosonde thermistor inside the balloon with a control thermistor measuring the free-air temperature. Similarly, a thermistor was sometimes installed inside the battery-pack housing to measure the temperature of the batteries.

While this system was in use it was general practice to use the standard government service thermistors ML 376/AM (brown) and ML 395/FMQ-1 (white). The white elements were needed when the external temperature was measured, since no adequate protection from the sun was available. Also, at floating level there is no ventilation to be had since the balloon is stationary with respect to the air.

The resistance of the thermistors was switched into the grid circuit of the blocking oscillator of the AM-1 transmitter, and by comparison with pre-flight calibrations the audio frequency transmitted could be interpreted in terms of temperature. To record the signal after it was received, a fast-speed Brush Co. Oscillograph Model BL212 is used. (Due to the frequency response of the Brush recording system, the circuit was arranged to give lower frequencies than a standard radiosonde for the same temperature range.) A sample calibration chart is shown in Figure 34.

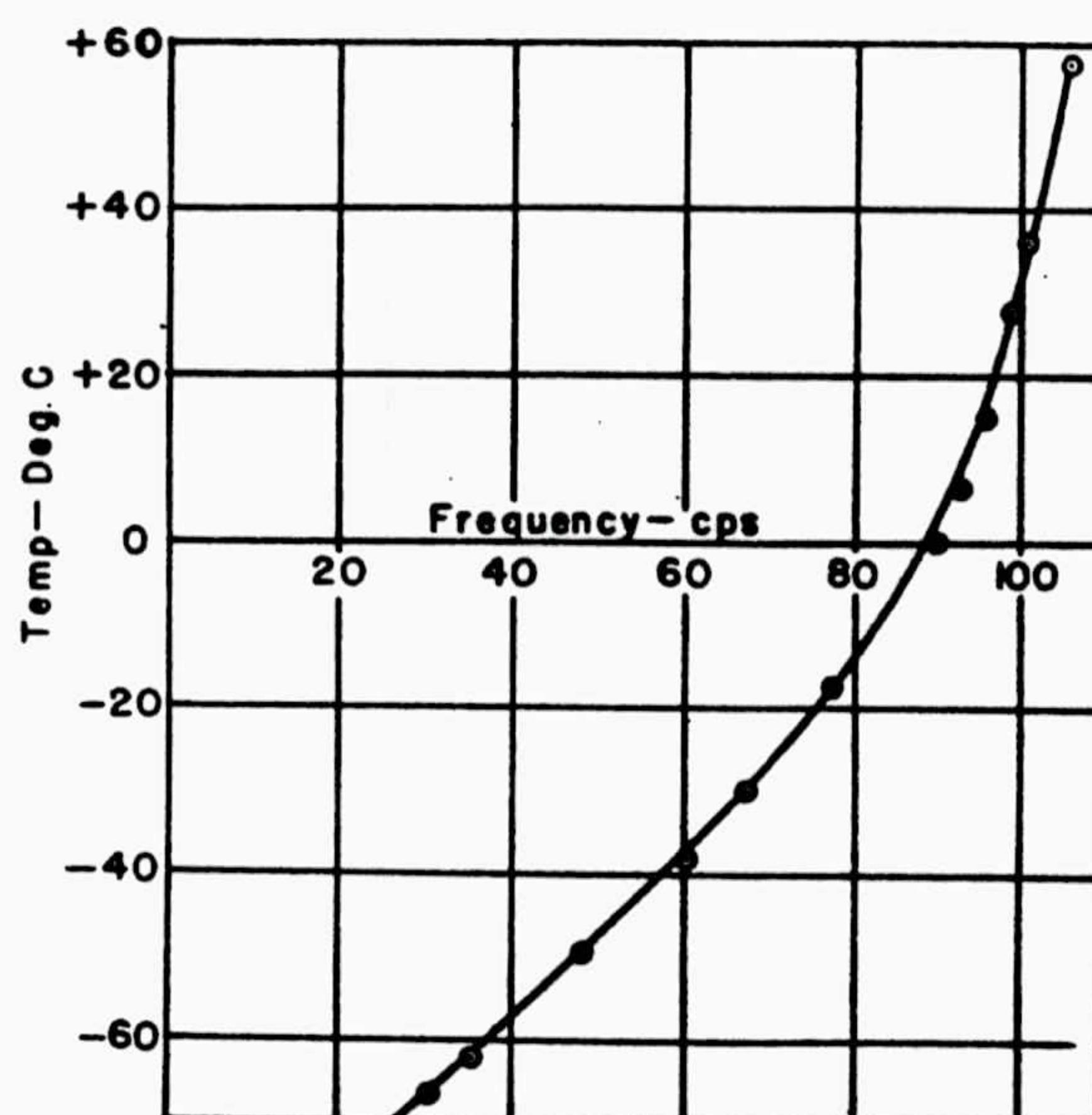


Figure 34. Sample calibration chart for temperature measurements.

The temperature data obtained was of considerable value, especially to determine the effect of insulation of the battery pack. It was found on most flights where reasonable thermal insulation was applied that the temperature of the pack remained above 0°C after several hours of exposure at nighttime. The extreme observed was -10°C. Daytime flights had the added advantage of heating from the sun.

The temperature of the lifting gas at the ground was ordinarily found to be somewhat below the temperature of the air. This is due to the extreme cooling encountered in the expansion of the compressed gas as it was fed from the tanks into the balloon. During the rising period, in daytime, the gas gained heat, since it cools adiabatically less rapidly than does air (also less than the normal tropospheric lapse rate); at the floating level a differential of about 10°C was common. A typical temperature trace is shown in Figure 35.

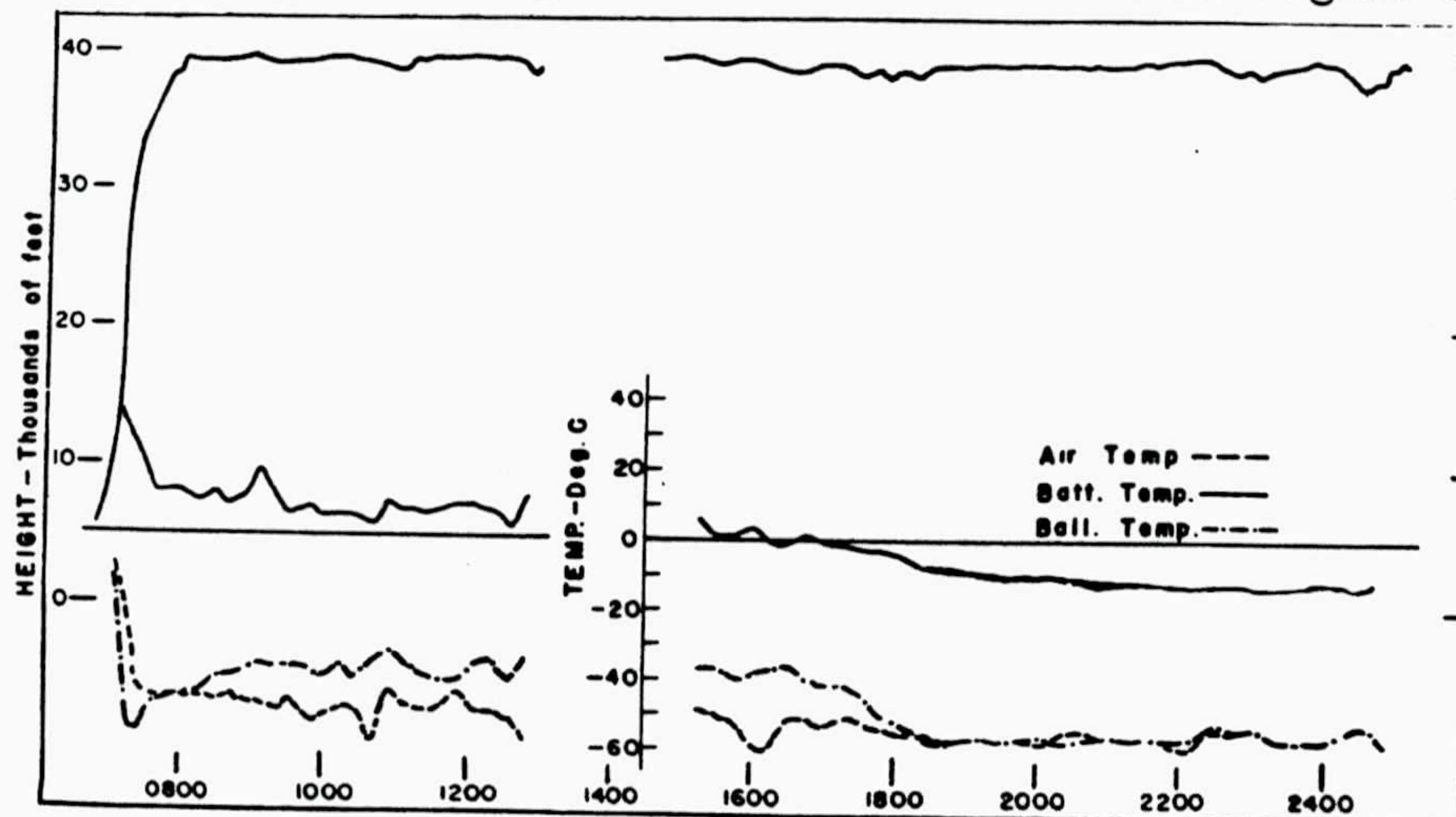


Figure 35. Typical temperature record.

To permit the transmission of both temperature and pressure data by one radio channel, a pair of programming switches have been designed and flight tested. The first is the temperature switch (Figure 36),

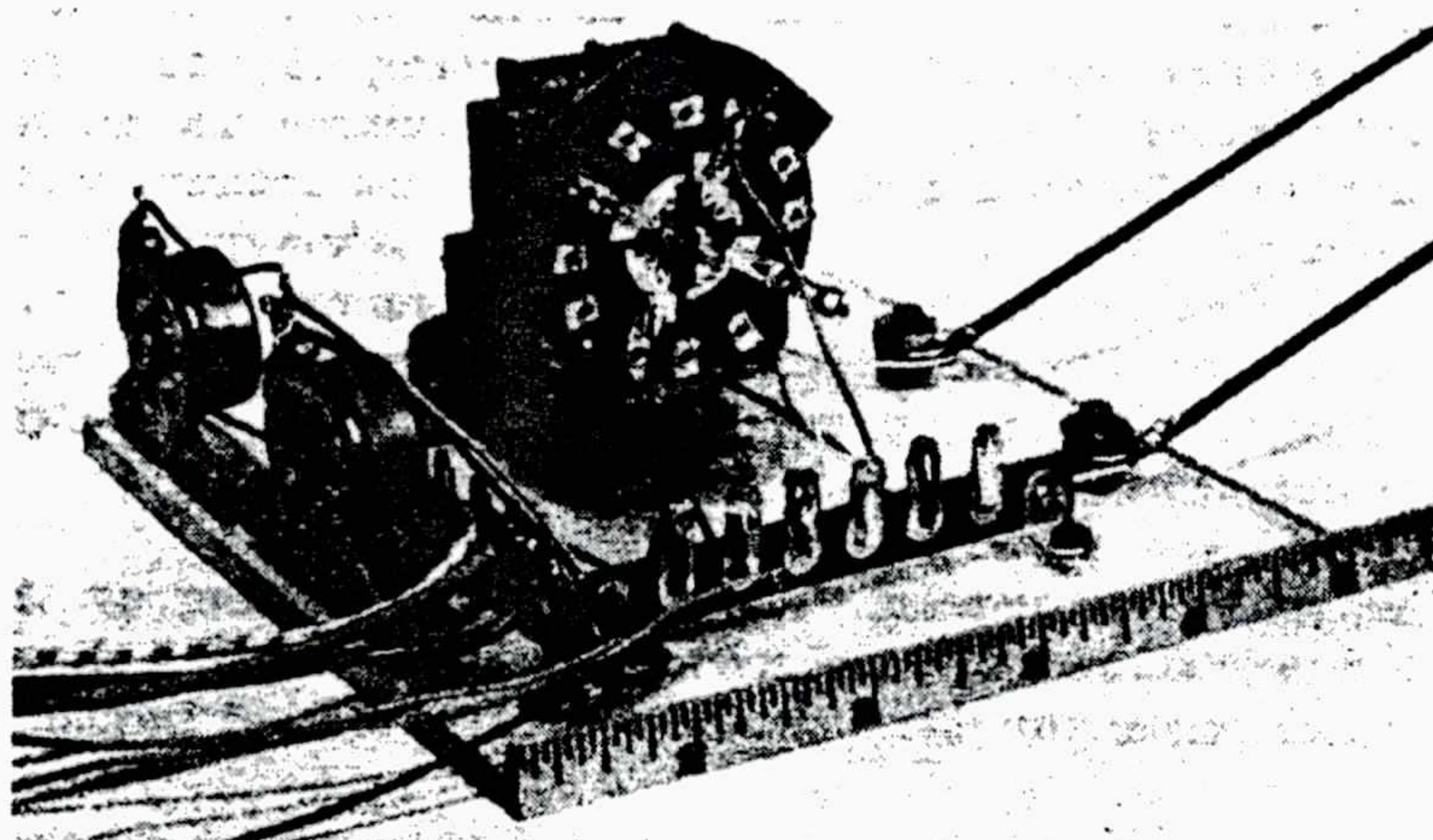


Figure 36. Temperature programming switch.

which switches four elements into the transmitter circuit in turn. Recently a motor making five revolutions per minute was used so that each temperature is transmitted for three seconds. The four elements are the free-air temperature, the gas temperature, battery-pack temperature and a reference signal. This switch is supplemented by a master program switch which alternately places the temperature switch and the pressure modulator into the transmitter circuit. The present arrangement is to permit the temperature data to be transmitted for about one minute in every fifteen. In this way representative temperature sampling may be obtained, without materially destroying the continuity of the pressure and ballast data.

A second system of determining temperature makes use of the smoked drum of the barograph. By adding a temperature-activated pen, this unit makes a record of the temperature encountered. Since it is not the free-air temperature nor the temperature of the lifting gas but rather the temperature of the barograph itself, the data obtained has been of little value. Following the development of suitable temperature telemetering apparatus, this method was not used.

C. Ballast Metering

It is often very desirable to know whether or not ballast control equipment is operating properly during flight tests. For this purpose, two systems of ballast metering have been devised. It is possible (1) to record on an instrument which is balloon-borne or (2) to detect and telemeter information to the ground concerning ballast flow.

Figure 37 shows the automatic siphon which has been used in the AM-1 transmitter circuit for the telemetering of such information. A series of pulses of fixed frequency is transmitted whenever the contact arm of the automatic siphon is filled above a critical level. The electrolyte used is non-miscible with the ballast and rises and falls in proportion to the rise and fall of the main arm of the siphon. This main arm empties when approximately 3.5 grams of ballast have been allowed to flow into it. As a consequence of this intermittent filling and emptying of the lines of the siphon, an intermittent signal of fixed frequency is transmitted whenever ballast is flowing steadily. It is important that an electrolyte be used which will not freeze at low atmospheric temperatures and will not boil at the low pressures encountered. After a series of tests it was decided that a 24% solution of hydrochloric acid be used for altitudes up to 85,000 feet. It is necessary to use platinum wire for the contact points.

In order to record in flight the functioning of the ballast control system a ballast recording mechanism has been developed in conjunction with the Lange Laboratories of Lexington, Kentucky. This

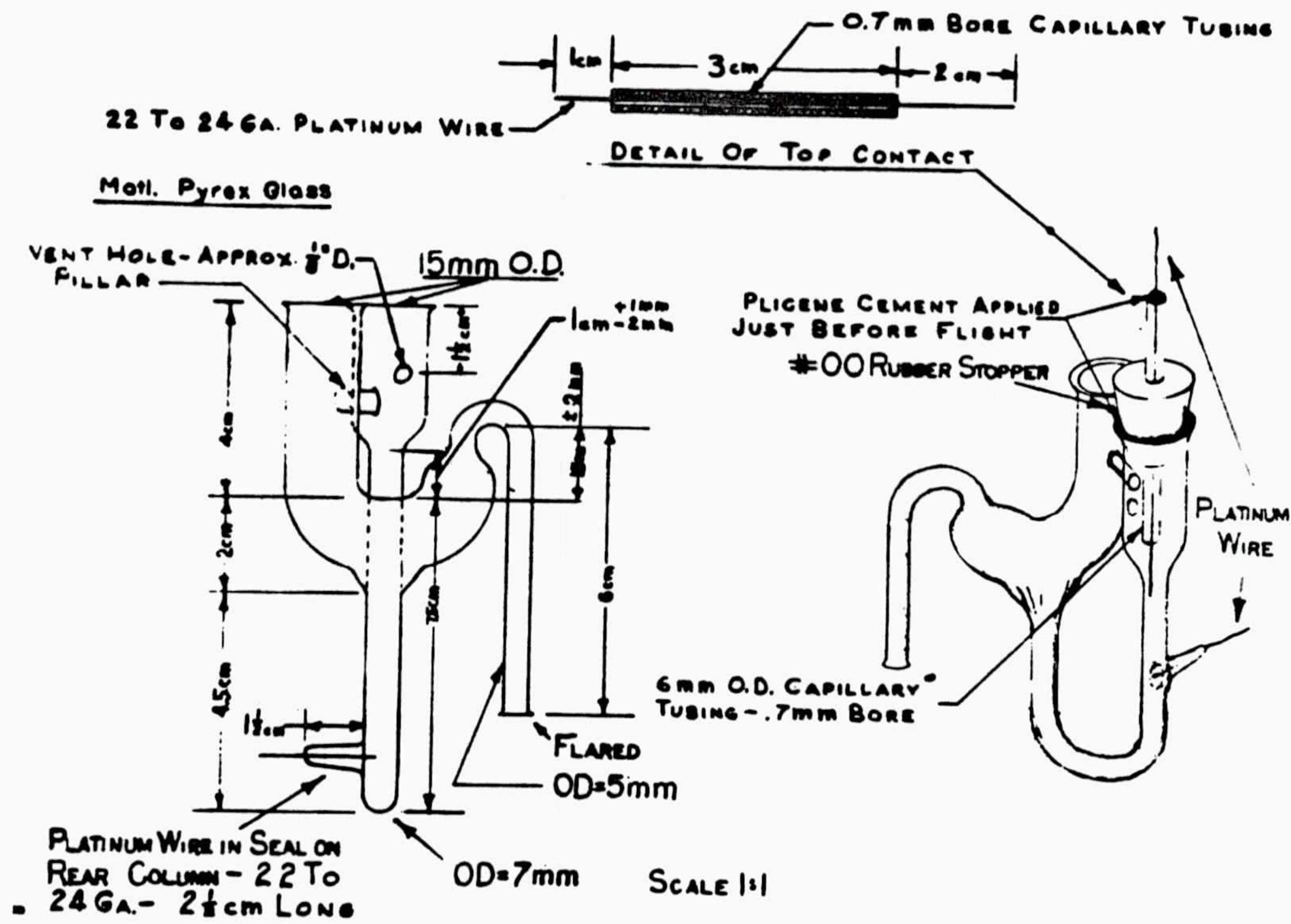


Figure 37. Automatic siphon.

instrument has been added as a part of the baro-thermograph. A cutaway sketch of this ballast-recording instrument is shown as Figure 38.

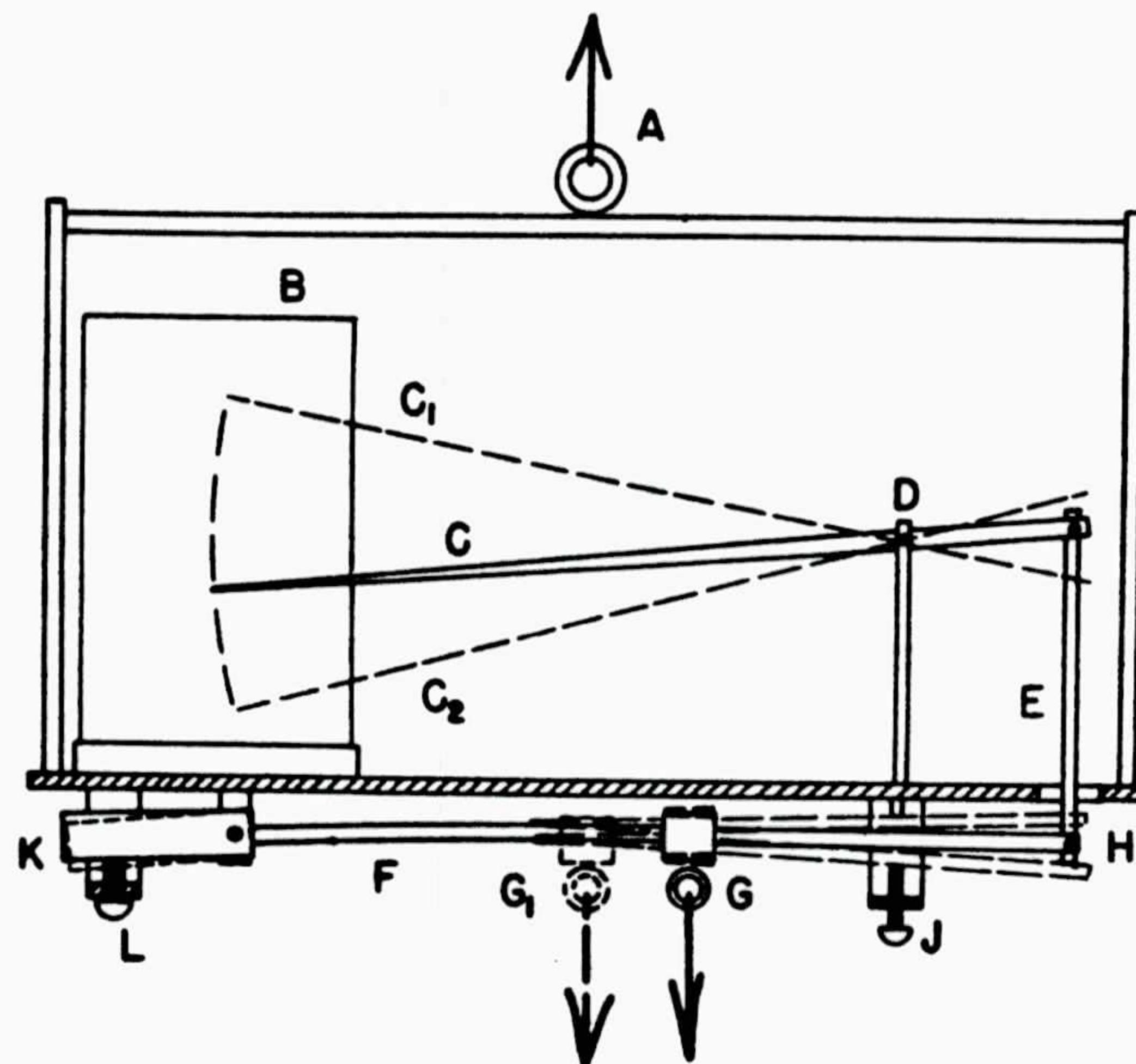


Figure 38. Ballast-recording meter.

Operation of the instrument may be described as follows: The instrument is inserted in the load line just above the ballast assembly by attaching the load line to the upper ring (A) and the rigging from the ballast assembly to the lower ring (B). A cantilever spring (F) is set into an adjustable base (K), which may be adjusted for various empty ballast-assembly weights by changing the setting of the adjusting screw (L). The lower ring is attached to the cantilever spring, but can be adjusted for different ballast weights by sliding along the spring (from G to G_1 , for instance). For light ballast weights the lower ring is moved away from the base (K) (to the right on the diagram), and for heavy ballast weights it is moved toward the base. Adjustments are made on the adjusting screw (L) and the lower ring (G) before each flight according to the weights of the ballast assembly and the ballast.

The cantilever spring is attached to the connecting bar (E) at (H). Thus the deflection of the lower ring is transferred through the cantilever spring to the connecting bar and then to the pen arm (C), which is pivoted about a fixed point (D). The deflection is recorded by the pen on a rotating smoked drum (B). In order to prevent the pen from going off the drum, an adjustable stop is set at (J).

The unit should be calibrated for maximum load (pen arm at C_1), a medium load (pen arm at C) and minimum load (pen arm at C_2) before each flight. A trace of ballast function will start at the top of the drum and as ballast is discarded will fall toward the bottom of the drum. By measuring the deflection at any time and comparing with the calibration, the amount of ballast left in the assembly at any time can be determined. Since this instrument is a part of the baro-thermograph, the trace obtained upon recovery will contain information concerning altitude, temperature, and ballast functioning over the complete flight. After proper correction for time displacement of the three pens has been made, the three types of information can be correlated to give a fairly complete picture of the balloon flight, including reasons for various types of motion.

It is expected that this instrument will be extremely valuable in determining ballast control operation over a long period of time, especially after the balloon system is out of radio reception range. It also will give information that could not be obtained if there were any failure of the automatic siphon meter or the transmitter during launching or flight. The chief drawback of the instrument is that information is dependent on recovery.

At the time of writing of this report the instrument has not been flight tested. Preliminary laboratory tests indicate that the instrument will live up to the high expectations placed upon it. Since the instrument actually records the tensile force in the load line during flight, it may also be valuable in analysis of the acceleration forces induced during periods of balloon oscillation in the atmosphere.

VII. CONCLUSIONS

Considerable experimental work has been done in conjunction with the study of balloons and controls. The description of operating procedures and the use of specially developed equipment is included in Part II of this report, "Operations," (bound separately).

A summary of the results of flights made to test equipment and controls is given in Part III, "Summary of Flights." At this time the use of thin polyethylene balloons with pressure-activated ballast controls has been demonstrated effectively to meet the contract requirements. Tests made on another contract have found controls consistently active over 24 hours with an average pressure constancy of 12 mb. at 200 mb. Even greater ballast efficiency has been found at higher altitudes using the same pressure-activated controls.