from typing import Callable, Optional, Tuple, cast from ..config import registry from ..initializers import glorot_uniform_init, zero_init from ..model import Model from ..types import Floats1d, Floats2d from ..util import get_width, partial from .chain import chain from .dropout import Dropout from .layernorm import LayerNorm @registry.layers("ClippedLinear.v1") def ClippedLinear( nO: Optional[int] = None, nI: Optional[int] = None, *, init_W: Optional[Callable] = None, init_b: Optional[Callable] = None, dropout: Optional[float] = None, normalize: bool = False, slope: float = 1.0, offset: float = 0.0, min_val: float = 0.0, max_val: float = 1.0, ) -> Model[Floats2d, Floats2d]: if init_W is None: init_W = glorot_uniform_init if init_b is None: init_b = zero_init model_attrs = { "slope": slope, "offset": offset, "min_val": min_val, "max_val": max_val, } model: Model[Floats2d, Floats2d] = Model( "clipped_linear", forward=forward, init=partial(init, init_W, init_b), dims={"nO": nO, "nI": nI}, params={"W": None, "b": None}, attrs=model_attrs, ) if normalize: model = chain(model, LayerNorm(nI=nO)) if dropout is not None: model = chain(model, cast(Model[Floats2d, Floats2d], Dropout(dropout))) return model def forward( model: Model[Floats2d, Floats2d], X: Floats2d, is_train: bool, ) -> Tuple[Floats2d, Callable]: slope = model.attrs["slope"] offset = model.attrs["offset"] min_val = model.attrs["min_val"] max_val = model.attrs["max_val"] W = cast(Floats2d, model.get_param("W")) b = cast(Floats1d, model.get_param("b")) Y_preact = model.ops.affine(X, W, b) Y = model.ops.clipped_linear(Y_preact, slope, offset, min_val, max_val) def backprop(dY: Floats2d) -> Floats2d: dY = model.ops.backprop_clipped_linear( dY, Y_preact, slope, offset, min_val, max_val, inplace=False ) model.inc_grad("b", dY.sum(axis=0)) model.inc_grad("W", model.ops.gemm(dY, X, trans1=True)) return model.ops.gemm(dY, W) return Y, backprop def init( init_W: Callable, init_b: Callable, model: Model[Floats2d, Floats2d], X: Optional[Floats2d] = None, Y: Optional[Floats2d] = None, ) -> None: if X is not None: model.set_dim("nI", get_width(X)) if Y is not None: model.set_dim("nO", get_width(Y)) model.set_param("W", init_W(model.ops, (model.get_dim("nO"), model.get_dim("nI")))) model.set_param("b", init_b(model.ops, (model.get_dim("nO"),))) @registry.layers("HardSigmoid.v1") def HardSigmoid( nO: Optional[int] = None, nI: Optional[int] = None, *, init_W: Optional[Callable] = None, init_b: Optional[Callable] = None, dropout: Optional[float] = None, normalize: bool = False, ) -> Model[Floats2d, Floats2d]: if init_W is None: init_W = glorot_uniform_init if init_b is None: init_b = zero_init return ClippedLinear( nO=nO, nI=nI, init_W=init_W, dropout=dropout, normalize=normalize, slope=0.2, offset=0.5, ) @registry.layers("HardTanh.v1") def HardTanh( nO: Optional[int] = None, nI: Optional[int] = None, *, init_W: Optional[Callable] = None, init_b: Optional[Callable] = None, dropout: Optional[float] = None, normalize: bool = False, ) -> Model[Floats2d, Floats2d]: if init_W is None: init_W = glorot_uniform_init if init_b is None: init_b = zero_init return ClippedLinear( nO=nO, nI=nI, init_W=init_W, dropout=dropout, normalize=normalize, min_val=-1.0, max_val=1.0, ) @registry.layers("ReluK.v1") def ReluK( nO: Optional[int] = None, nI: Optional[int] = None, *, init_W: Optional[Callable] = None, init_b: Optional[Callable] = None, dropout: Optional[float] = None, normalize: bool = False, k: float = 6.0, ) -> Model[Floats2d, Floats2d]: if init_W is None: init_W = glorot_uniform_init if init_b is None: init_b = zero_init return ClippedLinear( nO=nO, nI=nI, init_W=init_W, dropout=dropout, normalize=normalize, min_val=0.0, max_val=k, )